Парные корреляции
Команда Bivariate… меню производит вычисление таблицы коэффициентов Пирсона, характеризующего степень линейной связи, а также коэффициентов ранговой корреляции BTAU и Спирмена (Spearman). В синтаксисе эта команда имеет вид: CORRELATIONS /VARIABLES = v9 lnv14m /PRINT = TWOTAIL NOSIG. для обычного коэффициента корреляции и NONPAR CORR /VARIABLES = v10 v9 v14 /PRINT = SPEARMAN. или: NONPAR CORR /VARIABLES = v10 WITH v9 v14 /PRINT = KENDALL. для ранговых корреляций. Подкоманда /VARIABLES в этих командах указывает список переменных или два списка переменных, разделенных словом WITH. Если указывается один список переменных, то рассчитываются коэффициенты корреляции каждой переменной с каждой переменной (квадратная таблица). Если указываются два списка, разделенные служебным словом WITH, то рассчитываются коэффициенты корреляции всех переменных, расположенных слева от WITH, с переменными, расположенными справа (прямоугольная таблица). Ключевое слово WITH можно использовать только в окне синтаксиса. Процедура CORRELATIONS выводит: r – коэффициент корреляции Пирсона; число наблюдений (объектов) в скобках и значимость коэффициента корреляции. Коэффициент корреляции Пирсона между переменными X и Y вычисляется по формуле . Коэффициент корреляции может принимать значения от –1 до +1. При этом значимый отрицательный коэффициент корреляции позволяет принять гипотезу о наличии линейной отрицательной связи. Метод, используемый для проверки гипотезы, предполагает также двумерную нормальность распределения (X,Y). На практике это соответствует тому, что увеличению значения одной переменной в большинстве случаев соответствует уменьшение значения коррелирующей с ней переменной. Значимый положительный коэффициент корреляции свидетельствует о положительной связи переменных: увеличению одной переменной соответствует увеличение другой. Чем ближе абсолютное значение r к единице, тем более линейный характер носит зависимость исследуемых переменных; близость к 0 означает отсутствие линейной связи. Насколько полученное значение коэффициента корреляции не случайно, определяется по величине значимости (Sig. (2-tailed)) – вероятности получить большее, чем выборочное значение коэффициента корреляции. Для оценки значимости коэффициента Пирсона используется критерий t = Для оценки значимости коэффициентов Спирмена и Кендалла используется нормальная аппроксимация этих коэффициентов. По сути, коэффициент ранговой корреляции является коэффициентом корреляции между переменными, преобразованными в ранги (или процентили), поэтому для исследования значимости с помощью этих коэффициентов не требуется делать предположения о распределении данных. Пример выдачи коэффициентов Спирмена представлен в табл. 4.15. Не обнаруживается значимой связи возраста и образования (что вполне естественно), но среднемесячный душевой доход связан с образованием (это мы уже показывали). Таблица4. 15 Коэффициенты корреляции Спирмена (Spearman's rho)
Пусть имеются переменные X,Y,Z. Что, если взаимосвязь между переменными X и Y обусловлена некоторой другой переменной Z? Mожет быть, она проявляется при условии этой переменной? Для исследования этого вопроса применяется коэффициент частной корреляции. Вообще говоря, коэффициент корреляции X и Y должен зависеть от значений Z, однако известно, что в многомерной нормальной совокупности такой зависимости нет. Поэтому статистическая теория здесь разработана именно для такого случая. На практике весьма сложно доказать многомерную нормальность, и часто эту технику используют для анализа данных, не имеющих слишком больших перекосов. Не вдаваясь в подробности вычисления, коэффициент частной корреляции можно представить как коэффициент корреляции регрессионных остатков e x и e y уравнений: X = ax + bx ´ Z + e x Y = ay + by ´ Z + e y . Таким образом, снимается часть зависимости, обусловленная третьей переменной, проявляется «чистая» взаимосвязь X и Y. Уравнению регрессии мы посвятим в дальнейшем специальный раздел. Здесь мы приведем пример задания частной корреляции. Время, затраченное на покупки, и время на мытье посуды связаны положительно: чем больше человек тратит его на покупки, тем больше на посуду (табл. 4.16, RLMS, 7 волна). Может быть, это определяется тем, что человек вообще занимается домашней работой? Для проверки возьмем в качестве управляющей переменной время на уборку квартиры … и получим табл. 4.17. Оказалось, что эта связь между временными затратами на покупку продуктов и мытье посуды имеет самостоятельный смысл, так как частная корреляция по-прежнему значима, хотя уменьшилась с 0,320 до 0,256. Таблица4. 16 Коэффициент корреляции времени приготовления пищи и закупки продуктов
Таблица4. 17 Коэффициент корреляции времени приготовления пищи и закупки продуктов
Глава 5. НЕПАРАМЕТРИЧЕСКИЕ ТЕСТЫ. Непараметрические тесты предназначены преимущественно для проверки статистических гипотез методами, не связанными с видом распределения совокупности. В частности, применение этих методов не требует предположения о нормальности распределения, которое необходимо для правомерного использования одномерного дисперсионного анализа, процедуры T-TEST, при определении значимости корреляций, и т. д. К средствам непараметрического анализа относятся в числе прочих методов тест хи-квадрат, служащий для проверки взаимосвязи между номинальными переменными и коэффициентами ранговой корреляции, которым мы уже уделили некоторое внимание. Непараметрические тесты не ограничиваются таким исследованием связи пар переменных; они включают множество других методов, реализованных командой синтаксиса NPARTESTS. В меню SPSS непараметрические тесты реализует команда Nonparametric tests c множеством подкоманд. Процедура NPARTESTS включает большую группу критериев для проверки: - соответствия распределения выборочной совокупности заданному распределению; - случайного характера выборки объектов; - совпадения распределений в различных группах - совпадения распределений в связанных выборках (например, результатов повторных измерений). Во всех критериях допускаются асимптотические, точные оценки значимости (Exact) и оценки их методом Монте-Карло. |
Дата добавления: 2015-08-30; просмотров: 617. Нарушение авторских прав; Мы поможем в написании вашей работы! |
|
|
|
|
ЛЕКАРСТВЕННЫЕ ФОРМЫ ДЛЯ ИНЪЕКЦИЙ К лекарственным формам для инъекций относятся водные, спиртовые и масляные растворы, суспензии, эмульсии, новогаленовые препараты, жидкие органопрепараты и жидкие экстракты, а также порошки и таблетки для имплантации...
|
ТЕРМОДИНАМИКА БИОЛОГИЧЕСКИХ СИСТЕМ. 1. Особенности термодинамического метода изучения биологических систем. Основные понятия термодинамики. Термодинамикой называется раздел физики...
|