Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Тесты для связанных выборок (Related samples)





Напомним, что связанными выборками называются совокупности повторных измерений на одних и тех же объектах. Например, доходы семьи в различных волнах панельного обследования RLMS; психологические характеристики мужа и жены и т. п.

Двухвыборочный критерий знаков (Sign)

Для исследования связи пары измерений Х и Y рассматриваются знаки разностей di = YiXi. В случае независимости измерений и отсутствия повторов значений di (связей) число знаков «+» (положительных di) должно подчиняться биномиальному распределению с параметром p =0,5. Именно эта гипотеза и проверяется с помощью статистики критерия – стандартизованной частоты положительных разностей.

В качестве примера по данным RLMS проверим, какой характер имели изменения веса (кг) мужчин старше 30 лет в 1994 - 1995 гг.

COMPUTE filter_$ = (a_age < 30 & ah5_1 = 1).

FILTER BY filter_$.

NPAR TEST / SIGN = am1 WITH bm1 (PAIRED).

Таблица5. 14

Тест знаков для парных наблюдений. Частоты

Frequencies   N
BM1 вес в 1995 г. – AM1 вес в 1994 г. Negative Differences  
  Positive Differences  
  Ties  
  Total  

Судя по табл. 5.14, мужчины чаще худели, чем толстели, причем этот факт подтверждается отрицательным значением статистики критерия, наблюдаемая значимость которой равна 0,000118 (табл. 5.15.).

Таблица 5.15

Тест знаков для парных наблюдений. Значимость критерия

Test Statistics  
  BM1 вес в 1995г. – AM1 вес в 1994г.
Z –3,8512
Asymp. Sig. (2-tailed) 0,000118

Двухвыборочный знаково-ранговый критерий Вилкоксона (Wilcoxon)

Ранжируются абсолютные величины разностей di = YiXi. Затем рассматривается сумма рангов положительных и сумма рангов отрицательных разностей. Если связь между X и Y отсутствует и распределение одинаково, то эти две суммы должны быть примерно равны. Статистика критерия – стандартизованная разность этих сумм.

По сути, это проверка, не произошло ли между измерениями событие, существенно изменившее иерархию объектов?

Обратимся к предыдущему примеру, но проверим, будет ли преобладать отрицательный ранг изменения веса мужчин старше 30 лет?

NPAR TEST /WILCOXON = am1 WITH bm1 (PAIRED).

Табл. 5.16 показывает, что преобладает уменьшение веса, что подтверждается наблюдаемой значимостью статистики критерия, равной 0,00053 (табл. 5.17).

Таблица5. 16

Знаково-ранговый тест Вилкоксона. Средние ранги

BM1 вес в 1995г. – AM1 вес в 1994 г.   N Mean Rank Sum of Ranks
  Negative Ranks   802,2  
  Positive Ranks   797,4  
  Ties      
  Total      

Таблица5. 17

Знаково-ранговый тест Вилкоксона. Средние ранги

  BM1 вес в 1995 г. – AM1 вес в 1994 г.
Z –3,46504
Asymp. Sig. (2-tailed) 0,00053

Критерий Фридмана (Friedman)

Имеется k переменных. На каждом объекте независимо производится их ранжировка (по строке матрицы данных), затем вычисляется средний ранг по каждой переменной (по столбцу). Если все измерения независимы и равноценны (одинаково распределены), то все эти средние должны быть приближенно равны – (k + 1) / 2 – среднему рангу в строке. Статистикой критерия является нормированная сумма квадратов отклонений средних рангов по переменным от общего среднего (k + 1) / 2, которая имеет теоретическое распределение хи-квадрат.

Таблица5. 18

Tест Фридмана. Средние ранги

  Mean Rank
AM1 вес в 1994г.  
BM1 вес в 1995г. 2,13
CM1 вес в 1996г. 1,87

Таблица5. 19

Tест Фридмана. Значимость

N  
Chi-Square 0,561
Df  
Asymp. Sig. 0,755

 

Как ни странно, тест Фридмана, запущенный командой

NPAR TESTS /FRIEDMAN = am1 bm1 cm1.,

не показал значимых различий в измерениях веса по трем годам (см. предыдущие два примера), так как наблюдаемая значимость статистики хи-квадрат равна 0,755.

Глава 6. РЕГРЕССИОННЫЙ АНАЛИЗ

Задача регрессионного анализа состоит в построении модели, позволяющей получать оценки значений результирующей (так называемой зависимой) переменной по значениям объясняющих (так называемых независимых) показателей. Рассмотрим эту задачу в рамках самой распространен­ной в статистических пакетах классической модели линейной регрессии.

Специфика социологических исследований состоит в том, что очень часто необходимо изучать и предсказывать социальные события. Вторая часть данной главы посвящена логистической регрессии, целью которой является построение моделей, предсказывающих вероятности событий.







Дата добавления: 2015-08-30; просмотров: 596. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Деятельность сестер милосердия общин Красного Креста ярко проявилась в период Тритоны – интервалы, в которых содержится три тона. К тритонам относятся увеличенная кварта (ув.4) и уменьшенная квинта (ум.5). Их можно построить на ступенях натурального и гармонического мажора и минора.  ...

Понятие о синдроме нарушения бронхиальной проходимости и его клинические проявления Синдром нарушения бронхиальной проходимости (бронхообструктивный синдром) – это патологическое состояние...

Опухоли яичников в детском и подростковом возрасте Опухоли яичников занимают первое место в структуре опухолей половой системы у девочек и встречаются в возрасте 10 – 16 лет и в период полового созревания...

Роль органов чувств в ориентировке слепых Процесс ориентации протекает на основе совместной, интегративной деятельности сохранных анализаторов, каждый из которых при определенных объективных условиях может выступать как ведущий...

Лечебно-охранительный режим, его элементы и значение.   Терапевтическое воздействие на пациента подразумевает не только использование всех видов лечения, но и применение лечебно-охранительного режима – соблюдение условий поведения, способствующих выздоровлению...

Тема: Кинематика поступательного и вращательного движения. 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью, проекция которой изменяется со временем 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия