Решение. 8 страница
Решение. Найдем, за какое время , прошедшее от момента начала торможения, автомобиль проедет 30 метров:
. Значит, через 2 секунды после начала торможения автомобиль проедет 30 метров.
Ответ: 2. Ответ: 2 7. B 12. После дождя уровень воды в колодце может повыситься. Мальчик измеряет время падения небольших камешков в колодец и рассчитывает расстояние до воды по формуле , где – расстояние в метрах, – время падения в секундах. До дождя время падения камешков составляло 0,6 с. На сколько должен подняться уровень воды после дождя, чтобы измеряемое время изменилось на 0,2 с? Ответ выразите в метрах. Решение. Пусть – расстояние до воды до дождя, – расстояние до воды после дождя. После дождя уровень воды в колодце повысится, расстояние до воды уменьшится, и время падения уменьшится, станет равным с. Уровень воды поднимется на метров.
Ответ: 1. Ответ: 1 8. B 12. Высота над землeй подброшенного вверх мяча меняется по закону , где – высота в метрах, – время в секундах, прошедшее с момента броска. Сколько секунд мяч будет находиться на высоте не менее трeх метров? Решение. Определим моменты времени, когда мяч находился на высоте ровно три метра. Для этого решим уравнение :
Проанализируем полученный результат: поскольку по условию задачи мяч брошен снизу вверх, это означает, что в момент времени (с) мяч находился на высоте 3 метра, двигаясь снизу вверх, а в момент времени (с) мяч находился на этой высоте, двигаясь сверху вниз. Поэтому он находился на высоте не менее трёх метров 1,2 секунды.
Ответ: 1,2. Ответ: 1,2 9. B 12. Мотоциклист, движущийся по городу со скоростью км/ч, выезжает из него и сразу после выезда начинает разгоняться с постоянным ускорением км/ч . Расстояние от мотоциклиста до города, измеряемое в километрах, определяется выражением . Определите наибольшее время, в течение которого мотоциклист будет находиться в зоне функционирования сотовой связи, если оператор гарантирует покрытие на расстоянии не далее чем в 30 км от города. Ответ выразите в минутах. Решение. Мотоциклист будет находиться в зоне функционирования сотовой связи, если км. Задача сводится к нахождению наибольшего решения неравенства км при заданных значениях параметров и :
Учитывая то, что время – неотрицательная величина, получаем ч, то есть мин.
Ответ: 30. Ответ: 30 10. B 12. Скорость автомобиля, разгоняющегося с места старта по прямолинейному отрезку пути длиной км с постоянным ускорением км/ч 2, вычисляется по формуле . Определите наименьшее ускорение, с которым должен двигаться автомобиль, чтобы, проехав один километр, приобрести скорость не менее 100 км/ч. Ответ выразите в км/ч2.
Вариант № 3711816 1. B 12. Уравнение процесса, в котором участвовал газ, записывается в виде , где (Па) — давление в газе, — объeм газа в кубических метрах, — положительная константа. При каком наименьшем значении константы увеличение в 3 раза объeма газа, участвующего в этом процессе, приводит к уменьшению давления не менее, чем в 27 раз? Решение. Пусть и – начальные, а и – конечные значения объема и давления газа, соответственно. Задача сводится к решению неравенства , причем :
. Значит, наименьшее значение константы равно 3. Ответ: 3. Ответ: 3 2. B 12. Скорость колеблющегося на пружине груза меняется по закону (см/с), где t – время в секундах. Какую долю времени из первой секунды скорость движения превышала 2,5 см/с? Ответ выразите десятичной дробью, если нужно, округлите до сотых. Решение. Задача сводится к решению неравенства cм/с при заданном законе изменения скорости :
Таким образом, первой секунды после начала движения скорость груза превышала 2,5 см/с. Округляя, получаем 0,67. Ответ: 0,67. Ответ: 0,67 3. B 12. Скейтбордист прыгает на стоящую на рельсах платформу, со скоростью м/с под острым углом к рельсам. От толчка платформа начинает ехать со скоростью (м/с), где кг – масса скейтбордиста со скейтом, а кг – масса платформы. Под каким максимальным углом (в градусах) нужно прыгать, чтобы разогнать платформу не менее чем до 0,25 м/с? Решение. Задача сводится к решению неравенства на интервале при заданных значениях массы скейтбордиста кг и массы платформы кг:
. Ответ: 60. Ответ: 60 4. B 12. Очень лeгкий заряженный металлический шарик зарядом Кл скатывается по гладкой наклонной плоскости. В момент, когда его скорость составляет м/с, на него начинает действовать постоянное магнитное поле, вектор индукции которого лежит в той же плоскости и составляет угол с направлением движения шарика. Значение индукции поля Тл. При этом на шарик действует сила Лоренца, равная (Н) и направленная вверх перпендикулярно плоскости. При каком наименьшем значении угла шарик оторвeтся от поверхности, если для этого нужно, чтобы сила была не менее чем Н? Ответ дайте в градусах. Решение. Задача сводится к решению неравенства на интервале при заданных значениях заряда шарика Кл, индукции магнитного поля Тл и скорости м/с:
. Ответ: 30. Ответ: 30 5. B 12. Мяч бросили под углом к плоской горизонтальной поверхности земли. Время полeта мяча (в секундах) определяется по формуле . При каком наименьшем значении угла (в градусах) время полeта будет не меньше 3 секунд, если мяч бросают с начальной скоростью м/с? Считайте, что ускорение свободного падения м/с . Решение. Задача сводится к решению неравенства на интервале при заданных значениях начальной скорости и ускорения свободного падения:
. Ответ: 30. Ответ: 30 6. B 12. Скорость автомобиля, разгоняющегося с места старта по прямолинейному отрезку пути длиной км с постоянным ускорением , вычисляется по формуле . Определите наименьшее ускорение, с которым должен двигаться автомобиль, чтобы, проехав 0,7 километра, приобрести скорость не менее 105 км/ч. Ответ выразите в км/ч . Решение. Найдём, при каком ускорении гонщик достигнет требуемой скорости, проехав 0,7 километра. Задача сводится к решению уравнения при известном значении длины пути км:
км/ч2. Если его ускорение будет превосходить найденное, то, проехав один километр, гонщик наберёт большую скорость, поэтому наименьшее необходимое ускорение равно 7875 км/ч2. Ответ: 7875. Ответ: 7875 7. B 12. После дождя уровень воды в колодце может повыситься. Мальчик измеряет время падения небольших камешков в колодец и рассчитывает расстояние до воды по формуле , где – расстояние в метрах, – время падения в секундах. До дождя время падения камешков составляло 0,6 с. На сколько должен подняться уровень воды после дождя, чтобы измеряемое время изменилось на 0,2 с? Ответ выразите в метрах. Решение. Пусть – расстояние до воды до дождя, – расстояние до воды после дождя. После дождя уровень воды в колодце повысится, расстояние до воды уменьшится, и время падения уменьшится, станет равным с. Уровень воды поднимется на метров.
Ответ: 1. Ответ: 1 8. B 12. В розетку электросети подключены приборы, общее сопротивление которых составляет Ом. Параллельно с ними в розетку предполагается подключить электрообогреватель. Определите наименьшее возможное сопротивление этого электрообогревателя, если известно, что при параллельном соединении двух проводников с сопротивлениями Ом и Ом их общее сопротивление даeтся формулой (Ом), а для нормального функционирования электросети общее сопротивление в ней должно быть не меньше 9 Ом. Ответ (в омах.) Решение. Задача сводится к решению неравенства Ом при известном значении сопротивления приборов Ом:
Ом. Ответ: 10. Ответ: 10 9. B 12. Для определения эффективной температуры звeзд используют закон Стефана–Больцмана, согласно которому мощность излучения нагретого тела , измеряемая в ваттах, прямо пропорциональна площади его поверхности и четвeртой степени температуры: , где – постоянная, площадь измеряется в квадратных метрах, а температура – в градусах Кельвина. Известно, что некоторая звезда имеет площадь м , а излучаемая ею мощность не менее Вт. Определите наименьшую возможную температуру этой звезды. Приведите ответ в градусах Кельвина. Решение. Задача сводится к нахождению наименьшего решения неравенства при известном значениях постоянной и заданной площади звезды :
Ответ: 4000. Ответ: 4000 10. B 12. Опорные башмаки шагающего экскаватора, имеющего массу тонн, представляют собой две пустотелые балки длиной метров и шириной метров каждая. Давление экскаватора на почву, выражаемое в килопаскалях, определяется формулой , где – масса экскаватора (в тоннах), – длина балок в метрах, – ширина балок в метрах, – ускорение свободного падения (считайте м/с ). Определите наименьшую возможную ширину опорных балок, если известно, что давление не должно превышать 140 кПа. Ответ выразите в метрах. Вариант № 3711860 1. B 12. Плоский замкнутый контур площадью м находится в магнитном поле, индукция которого равномерно возрастает. При этом согласно закону электромагнитной индукции Фарадея в контуре появляется ЭДС индукции, значение которой, выраженное в вольтах, определяется формулой , где – острый угол между направлением магнитного поля и перпендикуляром к контуру, Тл/с – постоянная, – площадь замкнутого контура, находящегося в магнитном поле (в м ). При каком минимальном угле (в градусах) ЭДС индукции не будет превышать В? Решение. Задача сводится к решению неравенства на интервале при заданных значениях площади контура и постоянной Тл/с:
. Ответ: 60. Ответ: 60 2. B 12. Скорость колеблющегося на пружине груза меняется по закону (см/с), где t – время в секундах. Какую долю времени из первой секунды скорость движения превышала 2,5 см/с? Ответ выразите десятичной дробью, если нужно, округлите до сотых. Решение. Задача сводится к решению неравенства cм/с при заданном законе изменения скорости :
Таким образом, первой секунды после начала движения скорость груза превышала 2,5 см/с. Округляя, получаем 0,67. Ответ: 0,67. Ответ: 0,67 3. B 12. Сила тока в цепи (в амперах) определяется напряжением в цепи и сопротивлением электроприбора по закону Ома: , где – напряжение в вольтах, – сопротивление электроприбора в омах. В электросеть включeн предохранитель, который плавится, если сила тока превышает 4 А. Определите, какое минимальное сопротивление должно быть у электроприбора, подключаемого к розетке в 220 вольт, чтобы сеть продолжала работать. Ответ выразите в Омах. Решение. Задача сводится к решению неравенства А при известном значении напряжения В:
Ом. Ответ: 55. Ответ: 55 4. B 12. Независимое агентство намерено ввести рейтинг новостных интернет-изданий на основе оценок информативности , оперативности , объективности публикаций , а также качества сайта . Каждый отдельный показатель оценивается читателями по 5-балльной шкале целыми числами от -2 до 2.
Аналитики, составляющие формулу рейтинга, считают, что объективность ценится втрое, а информативность публикаций — впятеро дороже, чем оперативность и качество сайта. Таким образом, формула приняла вид Если по всем четырем показателям какое-то издание получило одну и ту же оценку, то рейтинг должен совпадать с этой оценкой. Найдите число , при котором это условие будет выполняться. Решение. Обозначим совпадающую оценку по разным показателям Поскольку все показатели равны друг другу, все они равны Подставим значения в формулу, учитывая, что рейтинг равен :
|