Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Ре­ше­ние. 24 страница





 

Ответ: −5.

Ответ: -5

5. B 15 № 26695. Най­ди­те наи­боль­шее зна­че­ние функ­ции на от­рез­ке .

Ре­ше­ние.

Най­дем про­из­вод­ную за­дан­ной функ­ции: Урав­не­ние не имеет ре­ше­ний, про­из­вод­ная по­ло­жи­тель­на при всех зна­че­ни­ях пе­ре­мен­ной, по­это­му за­дан­ная функ­ция яв­ля­ет­ся воз­рас­та­ю­щей.

Сле­до­ва­тель­но, наи­боль­шим зна­че­ни­ем функ­ции на за­дан­ном от­рез­ке яв­ля­ет­ся

 

Ответ: 5.

Ответ: 5

6. B 15 № 77491. Най­ди­те точку ми­ни­му­ма функ­ции .

Ре­ше­ние.

Най­дем про­из­вод­ную за­дан­ной функ­ции:

 

Най­дем нули про­из­вод­ной:

 

Опре­де­лим знаки про­из­вод­ной функ­ции и изоб­ра­зим на ри­сун­ке по­ве­де­ние функ­ции:

 

Ис­ко­мая точка ми­ни­му­ма .

Ответ: 1.

Ответ: 1

7. B 15 № 77474. Най­ди­те наи­боль­шее зна­че­ние функ­ции на от­рез­ке .

Ре­ше­ние.

Най­дем про­из­вод­ную за­дан­ной функ­ции:

 

.

Най­ден­ная про­из­вод­ная об­ра­ща­ет­ся в нуль в точ­ках 3 и −3, из них на от­рез­ке [−4; −1] лежит толь­ко точка −3.

 

Опре­де­лим знаки про­из­вод­ной функ­ции и изоб­ра­зим на ри­сун­ке по­ве­де­ние функ­ции:

 

В точке за­дан­ная функ­ция имеет мак­си­мум, яв­ля­ю­щий­ся ее наи­боль­шим зна­че­ни­ем на за­дан­ном от­рез­ке. Най­дем это наи­боль­шее зна­че­ние:

 

 

Ответ: −6.

Ответ: -6

8. B 15 № 77453. Най­ди­те точку ми­ни­му­ма функ­ции .

Ре­ше­ние.

Най­дем про­из­вод­ную за­дан­ной функ­ции:

 

.

Най­дем нули про­из­вод­ной:

 

Опре­де­лим знаки про­из­вод­ной функ­ции и изоб­ра­зим на ри­сун­ке по­ве­де­ние функ­ции:

 

Ис­ко­мая точка ми­ни­му­ма .

Ответ: 4.

Ответ: 4

9. B 15 № 26722. Най­ди­те точку мак­си­му­ма функ­ции .

Ре­ше­ние.

Функ­ция опре­де­ле­на и диф­фе­рен­ци­ру­е­ма на . Най­дем про­из­вод­ную за­дан­ной функ­ции:

 

Най­дем нули про­из­вод­ной:

 

Опре­де­лим знаки про­из­вод­ной функ­ции и изоб­ра­зим на ри­сун­ке по­ве­де­ние функ­ции:

Ис­ко­мая точка мак­си­му­ма .

Ответ: −4,5.

Ответ: -4,5

10. B 15 № 77422. Най­ди­те наи­боль­шее зна­че­ние функ­ции на от­рез­ке

Вариант № 3654717

1. B 15 № 26722. Най­ди­те точку мак­си­му­ма функ­ции .

Ре­ше­ние.

Функ­ция опре­де­ле­на и диф­фе­рен­ци­ру­е­ма на . Най­дем про­из­вод­ную за­дан­ной функ­ции:

 

Най­дем нули про­из­вод­ной:

 

Опре­де­лим знаки про­из­вод­ной функ­ции и изоб­ра­зим на ри­сун­ке по­ве­де­ние функ­ции:

Ис­ко­мая точка мак­си­му­ма .

Ответ: −4,5.

Ответ: -4,5

2. B 15 № 26699. Най­ди­те наи­боль­шее зна­че­ние функ­ции на от­рез­ке

Ре­ше­ние.

Най­дем про­из­вод­ную за­дан­ной функ­ции: Урав­не­ние не имеет ре­ше­ний, про­из­вод­ная от­ри­ца­тель­на при всех зна­че­ни­ях пе­ре­мен­ной, по­это­му за­дан­ная функ­ция яв­ля­ет­ся убы­ва­ю­щей.

 

Сле­до­ва­тель­но, наи­боль­шим зна­че­ни­ем функ­ции на за­дан­ном от­рез­ке яв­ля­ет­ся

 

Ответ: 32.

Ответ: 32

3. B 15 № 77481. Най­ди­те наи­боль­шее зна­че­ние функ­ции на от­рез­ке .

Ре­ше­ние.

Най­дем про­из­вод­ную за­дан­ной функ­ции:

 

 

Най­дем нули про­из­вод­ной:

Опре­де­лим знаки про­из­вод­ной функ­ции и изоб­ра­зим на ри­сун­ке по­ве­де­ние функ­ции:

 

 

В точке функ­ция имеет мак­си­мум, яв­ля­ю­щий­ся ее наи­боль­шим зна­че­ни­ем на за­дан­ном от­рез­ке. Най­дем это наи­боль­шее зна­че­ние:

.

Ответ: 10.

Ответ: 10

4. B 15 № 26732. Най­ди­те точку ми­ни­му­ма функ­ции .

Ре­ше­ние.

Най­дем про­из­вод­ную за­дан­ной функ­ции:

 

Най­дем нули про­из­вод­ной:

 

Опре­де­лим знаки про­из­вод­ной функ­ции и изоб­ра­зим на ри­сун­ке по­ве­де­ние функ­ции:

 

Ис­ко­мая точка ми­ни­му­ма .

Ответ: 2.

Ответ: 2

5. B 15 № 26710. Най­ди­те точку ми­ни­му­ма функ­ции .

Ре­ше­ние.

Най­дем про­из­вод­ную за­дан­ной функ­ции:

 

Най­дем нули про­из­вод­ной:

 

Опре­де­лим знаки про­из­вод­ной функ­ции и изоб­ра­зим на ри­сун­ке по­ве­де­ние функ­ции:

 

Ис­ко­мая точка ми­ни­му­ма .

Ответ: −17.

Ответ: -17

6. B 15 № 77445. Най­ди­те наи­мень­шее зна­че­ние функ­ции на от­рез­ке

Ре­ше­ние.

Най­дем про­из­вод­ную за­дан­ной функ­ции:

 

.

Най­дем нули про­из­вод­ной:

 

Опре­де­лим знаки про­из­вод­ной функ­ции и изоб­ра­зим на ри­сун­ке по­ве­де­ние функ­ции:

 

Из ри­сун­ка видно, что наи­мень­шее зна­че­ние функ­ции на за­дан­ном от­рез­ке до­сти­га­ет­ся в точке . Оно равно

Ответ: −25.

Ответ: -25

7. B 15 № 77452. Най­ди­те наи­мень­шее зна­че­ние функ­ции на от­рез­ке .

Ре­ше­ние.

Най­дем про­из­вод­ную за­дан­ной функ­ции:

 

.

Най­дем нули про­из­вод­ной:

 

Опре­де­лим знаки про­из­вод­ной функ­ции и изоб­ра­зим на ри­сун­ке по­ве­де­ние функ­ции:

 

В точке за­дан­ная функ­ция имеет ми­ни­мум, яв­ля­ю­щий­ся ее наи­мень­шим зна­че­ни­ем на за­дан­ном от­рез­ке. Най­дем это наи­мень­шее зна­че­ние: .

Ответ: −3.

Ответ: -3

8. B 15 № 26713. Най­ди­те точку мак­си­му­ма функ­ции .

Ре­ше­ние.

Най­дем про­из­вод­ную за­дан­ной функ­ции:

 

Най­дем нули про­из­вод­ной:

 

Опре­де­лим знаки про­из­вод­ной функ­ции и изоб­ра­зим на ри­сун­ке по­ве­де­ние функ­ции:

 

Ис­ко­мая точка мак­си­му­ма .

Ответ: −15.

Ответ: -15

9. B 15 № 282861. Най­ди­те наи­мень­шее зна­че­ние функ­ции на от­рез­ке .

Ре­ше­ние.

Най­дем про­из­вод­ную за­дан­ной функ­ции:

 

Най­дем нули про­из­вод­ной на за­дан­ном от­рез­ке:

 

Опре­де­лим знаки про­из­вод­ной функ­ции на за­дан­ном от­рез­ке и изоб­ра­зим на ри­сун­ке по­ве­де­ние функ­ции:

 

В точке за­дан­ная функ­ция имеет ми­ни­мум, яв­ля­ю­щий­ся ее наи­мень­шим зна­че­ни­ем на за­дан­ном от­рез­ке. Най­дем это наи­мень­шее зна­че­ние:

 

.

Ответ: −1.

Ответ: -1

10. B 15 № 77421. Най­ди­те наи­мень­шее зна­че­ние функ­ции на от­рез­ке

 

Вариант № 3654728

1. B 15. Най­ди­те наи­мень­шее зна­че­ние функ­ции на от­рез­ке .

Ре­ше­ние.

Най­дем про­из­вод­ную за­дан­ной функ­ции: Урав­не­ние не имеет ре­ше­ний, про­из­вод­ная от­ри­ца­тель­на при всех зна­че­ни­ях пе­ре­мен­ной, по­это­му за­дан­ная функ­ция яв­ля­ет­ся убы­ва­ю­щей.

Сле­до­ва­тель­но, наи­мень­шим зна­че­ни­ем функ­ции на за­дан­ном от­рез­ке яв­ля­ет­ся

 

Ответ: 9.

Ответ: 9

2. B 15. Най­ди­те наи­мень­шее зна­че­ние функ­ции на от­рез­ке .

Ре­ше­ние.

Най­дем про­из­вод­ную за­дан­ной функ­ции:

 

 

.

Най­дем нули про­из­вод­ной:

 

 

.

 

В точке за­дан­ная функ­ция имеет ми­ни­мум, яв­ля­ю­щий­ся ее наи­мень­шим зна­че­ни­ем на за­дан­ном от­рез­ке. Най­дем это наи­мень­шее зна­че­ние:

.

 

Ответ: −4.

Ответ: -4

3. B 15. Най­ди­те точку мак­си­му­ма функ­ции .

Ре­ше­ние.

Най­дем про­из­вод­ную за­дан­ной функ­ции:

 

.

Най­дем нули про­из­вод­ной:

 

Опре­де­лим знаки про­из­вод­ной функ­ции и изоб­ра­зим на ри­сун­ке по­ве­де­ние функ­ции:

 

Ис­ко­мая точка мак­си­му­ма .

Ответ: −3.

Ответ: -3

4. B 15. Най­ди­те наи­боль­шее зна­че­ние функ­ции на от­рез­ке .

Ре­ше­ние.

Най­дем про­из­вод­ную за­дан­ной функ­ции:

 

Сде­ла­ем за­ме­ну и решим по­лу­чен­ное урав­не­ние:

Вер­нем­ся к ис­ход­ной пе­ре­мен­ной:

 

Опре­де­лим знаки про­из­вод­ной функ­ции и изоб­ра­зим на ри­сун­ке по­ве­де­ние функ­ции:

 

На от­рез­ке функ­ция до­сти­га­ет наи­боль­ше­го зна­че­ния в точке −2. Най­дем его:

 

Ответ: 48.

Ответ: 48

5. B 15. Най­ди­те наи­мень­шее зна­че­ние функ­ции

 

Ре­ше­ние.

Вы­де­лим пол­ный квад­рат:

 

 

От­сю­да имеем:

 

 

По­это­му наи­мень­шее знач­ние функ­ции до­сти­га­ет­ся в точке 3, и оно равно 2.

 

 

Ответ: 2.

 

При­ме­ча­ние.

При­ве­дем дру­гое ре­ше­ние.

 

По­сколь­ку функ­ция воз­рас­та­ю­щая, а под­ко­рен­ное вы­ра­же­ние по­ло­жи­тель­но при всех зна­че­ни­ях пе­ре­мен­ной, за­дан­ная функ­ция до­сти­га­ет наи­мень­ше­го зна­че­ния в той же точке, в ко­то­рой до­сти­га­ет наи­мень­ше­го зна­че­ния под­ко­рен­ное вы­ра­же­ние. Квад­рат­ный трех­член с по­ло­жи­тель­ным стар­шим ко­эф­фи­ци­ен­том до­сти­га­ет наи­мень­ше­го зна­че­ния в точке , в нашем слу­чае — в точке 3, и оно равно 4. Сле­до­ва­тель­но, наи­мень­шее зна­че­ние за­дан­ной функ­ции .

Ответ: 2

6. B 15. Най­ди­те точку ми­ни­му­ма функ­ции .

Ре­ше­ние.

Най­дем про­из­вод­ную за­дан­ной функ­ции:

 

Най­дем нули про­из­вод­ной:

 

Опре­де­лим знаки про­из­вод­ной функ­ции и изоб­ра­зим на ри­сун­ке по­ве­де­ние функ­ции:

Ис­ко­мая точка ми­ни­му­ма .

Ответ: 4.

Ответ: 4

7. B 15. Най­ди­те наи­мень­шее зна­че­ние функ­ции .

Ре­ше­ние.

Квад­рат­ный трех­член с по­ло­жи­тель­ным стар­шим ко­эф­фи­ци­ен­том до­сти­га­ет наи­мень­ше­го зна­че­ния в точке , в нашем слу­чае — в точке 3. Функ­ция в этой точке опре­де­ле­на и при­ни­ма­ет зна­че­ние . По­сколь­ку ло­га­риф­ми­че­ская функ­ция с ос­но­ва­ни­ем, боль­шим 1, воз­рас­та­ет, най­ден­ное зна­че­ние яв­ля­ет­ся ис­ко­мым наи­мень­шим зна­че­ни­ем за­дан­ной функ­ции.

 

Ответ: 2.

Ответ: 2

8. B 15. Най­ди­те наи­боль­шее зна­че­ние функ­ции на от­рез­ке .

Ре­ше­ние.

Най­дем про­из­вод­ную за­дан­ной функ­ции:

 

.

Из урав­не­ния най­дем нули про­из­вод­ной:

 

Опре­де­лим знаки про­из­вод­ной функ­ции и изоб­ра­зим на ри­сун­ке по­ве­де­ние функ­ции:

 

На от­рез­ке [−2; 0] функ­ция убы­ва­ет, по­это­му она до­сти­га­ет сво­е­го наи­боль­ше­го зна­че­ния в точке x = −2. Най­дем это наи­боль­шее зна­че­ние:

Ответ: 12.

Ответ: 12

9. B 15. Най­ди­те наи­боль­шее зна­че­ние функ­ции на от­рез­ке .

Ре­ше­ние.

Най­дем про­из­вод­ную за­дан­ной функ­ции:

 

Най­ден­ная про­из­вод­ная не­от­ри­ца­тель­на на за­дан­ном от­рез­ке, за­дан­ная функ­ция воз­рас­та­ет на нем, по­это­му наи­боль­шим зна­че­ни­ем функ­ции на от­рез­ке яв­ля­ет­ся

 

Ответ: 11.

Ответ: 11

10. B 15 № 26705. Най­ди­те наи­мень­шее зна­че­ние функ­ции на от­рез­ке .

 

Вариант № 3655569

1. B 15 № 286803. Най­ди­те наи­мень­шее зна­че­ние функ­ции .

Ре­ше­ние.

Вы­де­лим пол­ный квад­рат:

 

 

От­сю­да имеем:

 

 

По­это­му наи­мень­шее знач­ние функ­ции до­сти­га­ет­ся в точке −11, и оно равно 1.

 

 

Ответ: 1.

Ответ: 1

2. B 15 № 26696. Най­ди­те наи­мень­шее зна­че­ние функ­ции на от­рез­ке .

Ре­ше­ние.

Най­дем про­из­вод­ную за­дан­ной функ­ции: . Най­ден­ная про­из­вод­ная по­ло­жи­тель­на при всех зна­че­ни­ях пе­ре­мен­ной, по­это­му за­дан­ная функ­ция яв­ля­ет­ся воз­рас­та­ю­щей.

 

Сле­до­ва­тель­но, наи­мень­шим зна­че­ни­ем функ­ции на за­дан­ном от­рез­ке яв­ля­ет­ся

 

.

Ответ: 16.

Ответ: 16

B 15 № 286703.

Най­ди­те точку ми­ни­му­ма функ­ции .

Ре­ше­ние.

Квад­рат­ный трех­член с по­ло­жи­тель­ным стар­шим ко­эф­фи­ци­ен­том до­сти­га­ет ми­ни­му­ма в точке , в нашем слу­чае — в точке 14. По­сколь­ку функ­ция воз­рас­та­ю­щая, а за­дан­ная функ­ция опре­де­ле­на при най­ден­ном зна­че­нии пе­ре­мен­ной, она до­сти­га­ет ми­ни­му­ма в той же точке, в ко­то­рой до­сти­на­ет ми­ни­му­ма под­ко­рен­ное вы­ра­же­ние.

 

Ответ: 14.

Ответ: 14

B 15 № 286603.

Най­ди­те точку мак­си­му­ма функ­ции .

Ре­ше­ние.

Квад­рат­ный трех­член с от­ри­ца­тель­ным стар­шим ко­эф­фи­ци­ен­том до­сти­га­ет мак­си­му­ма в точке , в нашем слу­чае — в точке 6. По­сколь­ку функ­ция воз­рас­та­ю­щая, а за­дан­ная функ­ция опре­де­ле­на при най­ден­ном зна­че­нии пе­ре­мен­ной, она до­сти­га­ет мак­си­му­ма в той же точке, в ко­то­рой до­сти­га­ет мак­си­му­ма под­ко­рен­ное вы­ра­же­ние.

 

Ответ: 6.

Ответ: 6

5. B 15 № 26714. Най­ди­те наи­мень­шее зна­че­ние функ­ции на от­рез­ке .

Ре­ше­ние.

Най­дем про­из­вод­ную за­дан­ной функ­ции:

 

Най­дем нули про­из­вод­ной на за­дан­ном от­рез­ке:







Дата добавления: 2015-08-30; просмотров: 1401. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Различие эмпиризма и рационализма Родоначальником эмпиризма стал английский философ Ф. Бэкон. Основной тезис эмпиризма гласит: в разуме нет ничего такого...

Индекс гингивита (PMA) (Schour, Massler, 1948) Для оценки тяжести гингивита (а в последующем и ре­гистрации динамики процесса) используют папиллярно-маргинально-альвеолярный индекс (РМА)...

Методика исследования периферических лимфатических узлов. Исследование периферических лимфатических узлов производится с помощью осмотра и пальпации...

Способы тактических действий при проведении специальных операций Специальные операции проводятся с применением следующих основных тактических способов действий: охрана...

Искусство подбора персонала. Как оценить человека за час Искусство подбора персонала. Как оценить человека за час...

Этапы творческого процесса в изобразительной деятельности По мнению многих авторов, возникновение творческого начала в детской художественной практике носит такой же поэтапный характер, как и процесс творчества у мастеров искусства...

Studopedia.info - Студопедия - 2014-2025 год . (0.014 сек.) русская версия | украинская версия