Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Ре­ше­ние. 22 страница





 

.

Ответ: 6.

Ответ: 6

4. B 15. Най­ди­те точку ми­ни­му­ма функ­ции .

 

Ре­ше­ние.

Квад­рат­ный трех­член с по­ло­жи­тель­ным стар­шим ко­эф­фи­ци­ен­том до­сти­га­ет ми­ни­му­ма в точке , в нашем слу­чае — в точке 3. По­сколь­ку функ­ция воз­рас­та­ет, и за­дан­ная функ­ция опре­де­ле­на в точке 3, она также до­сти­га­ет в ней ми­ни­му­ма.

 

Ответ: 3.

Ответ: 3

5. B 15. Най­ди­те наи­мень­шее зна­че­ние функ­ции

Ре­ше­ние.

По­сколь­ку функ­ция воз­рас­та­ю­щая, за­дан­ная функ­ция до­сти­га­ет наи­мень­ше­го зна­че­ния в той же точке, в ко­то­рой до­сти­га­ет наи­мень­ше­го зна­че­ния вы­ра­же­ние Квад­рат­ный трех­член с по­ло­жи­тель­ным стар­шим ко­эф­фи­ци­ен­том до­сти­га­ет наи­мень­ше­го зна­че­ния в точке в нашем слу­чае — в точке −1. Зна­че­ние функ­ции в этой точке равно

 

Ответ: 16.

Ответ: 16

6. B 15. Най­ди­те точку ми­ни­му­ма функ­ции .

Ре­ше­ние.

За­ме­тим, что . Об­ласть опре­де­ле­ния функ­ции — от­кры­тый луч . Най­дем про­из­вод­ную за­дан­ной функ­ции:

 

Най­дем нули про­из­вод­ной:

 

Най­ден­ная точка лежит на луче . Опре­де­лим знаки про­из­вод­ной функ­ции и изоб­ра­зим на ри­сун­ке по­ве­де­ние функ­ции:

 

Ис­ко­мая точка ми­ни­му­ма .

Ответ: −6.

Ответ: -6

7. B 15. Най­ди­те наи­мень­шее зна­че­ние функ­ции на от­рез­ке .

Ре­ше­ние.

Най­дем про­из­вод­ную за­дан­ной функ­ции:

 

Най­дем нули про­из­вод­ной на за­дан­ном от­рез­ке:

 

Опре­де­лим знаки про­из­вод­ной функ­ции на за­дан­ном от­рез­ке и изоб­ра­зим на ри­сун­ке по­ве­де­ние функ­ции:

 

В точке за­дан­ная функ­ция имеет ми­ни­мум, яв­ля­ю­щий­ся ее наи­мень­шим зна­че­ни­ем на за­дан­ном от­рез­ке. Най­дем это наи­мень­шее зна­че­ние:

.

Ответ: −6.

Ответ: -6

8. B 15. Най­ди­те точку ми­ни­му­ма функ­ции .

Ре­ше­ние.

Най­дем про­из­вод­ную за­дан­ной функ­ции:

 

.

Най­дем нули про­из­вод­ной:

 

Опре­де­лим знаки про­из­вод­ной функ­ции и изоб­ра­зим на ри­сун­ке по­ве­де­ние функ­ции:

 

Ис­ко­мая точка ми­ни­му­ма .

Ответ: 1.

Ответ: 1

9. B 15. Най­ди­те наи­мень­шее зна­че­ние функ­ции на от­рез­ке .

Ре­ше­ние.

Най­дем про­из­вод­ную за­дан­ной функ­ции:

 

Най­дем нули про­из­вод­ной на за­дан­ном от­рез­ке:

 

Опре­де­лим знаки про­из­вод­ной функ­ции на за­дан­ном от­рез­ке и изоб­ра­зим на ри­сун­ке по­ве­де­ние функ­ции:

 

В точке за­дан­ная функ­ция имеет ми­ни­мум, яв­ля­ю­щий­ся ее наи­мень­шим зна­че­ни­ем на за­дан­ном от­рез­ке. Най­дем это наи­мень­шее зна­че­ние:

 

.

Ответ: −1.

Ответ: -1

10. B 15. Най­ди­те наи­боль­шее зна­че­ние функ­ции на от­рез­ке .

 

 

Вариант № 3639036

1. B 15. Най­ди­те точку мак­си­му­ма функ­ции .

Ре­ше­ние.

За­ме­тим, что . Об­ласть опре­де­ле­ния функ­ции — от­кры­тый луч . Най­дем про­из­вод­ную за­дан­ной функ­ции:

 

Най­дем нули про­из­вод­ной:

 

Най­ден­ная точка лежит на луче . Опре­де­лим знаки про­из­вод­ной функ­ции и изоб­ра­зим на ри­сун­ке по­ве­де­ние функ­ции:

 

Ис­ко­мая точка мак­си­му­ма .

Ответ: −6.

Ответ: -6

B 15

Най­ди­те точку мак­си­му­ма функ­ции .

Ре­ше­ние.

Квад­рат­ный трех­член с от­ри­ца­тель­ным стар­шим ко­эф­фи­ци­ен­том до­сти­га­ет мак­си­му­ма в точке , в нашем слу­чае — в точке 6. По­сколь­ку функ­ция воз­рас­та­ю­щая, а за­дан­ная функ­ция опре­де­ле­на при най­ден­ном зна­че­нии пе­ре­мен­ной, она до­сти­га­ет мак­си­му­ма в той же точке, в ко­то­рой до­сти­га­ет мак­си­му­ма под­ко­рен­ное вы­ра­же­ние.

 

Ответ: 6.

Ответ: 6

3. B 15 Най­ди­те точку ми­ни­му­ма функ­ции .

Ре­ше­ние.

Най­дем про­из­вод­ную за­дан­ной функ­ции:

 

Най­дем нули про­из­вод­ной:

 

Опре­де­лим знаки про­из­вод­ной функ­ции и изоб­ра­зим на ри­сун­ке по­ве­де­ние функ­ции:

 

Ис­ко­мая точка ми­ни­му­ма .

Ответ: 2.

Ответ: 2

4. B 15 Най­ди­те точку мак­си­му­ма функ­ции .

Ре­ше­ние.

Най­дем про­из­вод­ную за­дан­ной функ­ции:

 

.

Най­дем нули про­из­вод­ной:

 

.

Опре­де­лим знаки про­из­вод­ной функ­ции и изоб­ра­зим на ри­сун­ке по­ве­де­ние функ­ции:

 

Ис­ко­мая точка мак­си­му­ма .

Ответ: 4.

Ответ: 4

5. B 15. Най­ди­те точку ми­ни­му­ма функ­ции .

Ре­ше­ние.

За­ме­тим, что . Об­ласть опре­де­ле­ния функ­ции — от­кры­тый луч . Най­дем про­из­вод­ную за­дан­ной функ­ции:

 

Най­дем нули про­из­вод­ной:

 

Най­ден­ная точка лежит на луче . Опре­де­лим знаки про­из­вод­ной функ­ции и изоб­ра­зим на ри­сун­ке по­ве­де­ние функ­ции:

 

Ис­ко­мая точка ми­ни­му­ма .

Ответ: −6.

Ответ: -6

6. B 15. Най­ди­те наи­мень­шее зна­че­ние функ­ции на от­рез­ке .

Ре­ше­ние.

Най­дем про­из­вод­ную за­дан­ной функ­ции:

 

.

Най­дем нули про­из­вод­ной:

 

Опре­де­лим знаки про­из­вод­ной функ­ции и изоб­ра­зим на ри­сун­ке по­ве­де­ние функ­ции:

 

В точке за­дан­ная функ­ция имеет ми­ни­мум, яв­ля­ю­щий­ся ее наи­мень­шим зна­че­ни­ем на за­дан­ном от­рез­ке. Най­дем это наи­мень­шее зна­че­ние: .

Ответ: 0.

Ответ: 0

7. B 15. Най­ди­те наи­мень­шее зна­че­ние функ­ции на от­рез­ке .

Ре­ше­ние.

Най­дем про­из­вод­ную за­дан­ной функ­ции:

 

.

Най­дем нули про­из­вод­ной:

 

Опре­де­лим знаки про­из­вод­ной функ­ции и изоб­ра­зим на ри­сун­ке по­ве­де­ние функ­ции:

В точке за­дан­ная функ­ция имеет ми­ни­мум, яв­ля­ю­щий­ся ее наи­мень­шим зна­че­ни­ем на за­дан­ном от­рез­ке. Най­дем это наи­мень­шее зна­че­ние: .

Ответ: −1.

Ответ: -1

8. B 15. Най­ди­те точку мак­си­му­ма функ­ции .

Ре­ше­ние.

По­сколь­ку функ­ция воз­рас­та­ю­щая, за­дан­ная функ­ция до­сти­га­ет мак­си­му­ма в той же точке, в ко­то­рой до­сти­на­ет мак­си­му­ма вы­ра­же­ние . Квад­рат­ный трех­член с от­ри­ца­тель­ным стар­шим ко­эф­фи­ци­ен­том до­сти­га­ет мак­си­му­ма в точке , в нашем слу­чае — в точке 3.

 

Ответ: 3.

Ответ: 3

9. B 15 Най­ди­те точку ми­ни­му­ма функ­ции .

Ре­ше­ние.

Най­дем про­из­вод­ную за­дан­ной функ­ции:

 

.

Най­дем нули про­из­вод­ной:

 

Опре­де­лим знаки про­из­вод­ной функ­ции и изоб­ра­зим на ри­сун­ке по­ве­де­ние функ­ции:

 

Ис­ко­мая точка ми­ни­му­ма .

Ответ: −1.

Ответ: -1

10. B 15 № 77426. Най­ди­те наи­боль­шее зна­че­ние функ­ции на от­рез­ке

 

Вариант № 3639045

1. B 15 Най­ди­те наи­боль­шее зна­че­ние функ­ции на от­рез­ке .

Ре­ше­ние.

Най­дем про­из­вод­ную за­дан­ной функ­ции:

 

 

Най­дем нули про­из­вод­ной:

Опре­де­лим знаки про­из­вод­ной функ­ции и изоб­ра­зим на ри­сун­ке по­ве­де­ние функ­ции:

 

 

В точке функ­ция имеет мак­си­мум, яв­ля­ю­щий­ся ее наи­боль­шим зна­че­ни­ем на за­дан­ном от­рез­ке. Най­дем это наи­боль­шее зна­че­ние:

.

Ответ: 10.

Ответ: 10

2. B 15 Най­ди­те наи­боль­шее зна­че­ние функ­ции на от­рез­ке .

Ре­ше­ние.

Най­дем про­из­вод­ную за­дан­ной функ­ции:

 

.

Най­дем нули про­из­вод­ной: и , на за­дан­ном от­рез­ке лежит толь­ко число 6.

Опре­де­лим знаки про­из­вод­ной функ­ции и изоб­ра­зим на ри­сун­ке по­ве­де­ние функ­ции:

В точке за­дан­ная функ­ция имеет мак­си­мум, яв­ля­ю­щий­ся ее наи­боль­шим зна­че­ни­ем на за­дан­ном от­рез­ке. Най­дем это наи­боль­шее зна­че­ние: .

Ответ: 108.

Ответ: 108

3. B 15. Най­ди­те точку ми­ни­му­ма функ­ции .

Ре­ше­ние.

Най­дем про­из­вод­ную за­дан­ной функ­ции:

 

.

Най­дем нули про­из­вод­ной:

 

Опре­де­лим знаки про­из­вод­ной функ­ции и изоб­ра­зим на ри­сун­ке по­ве­де­ние функ­ции:

 

Ис­ко­мая точка ми­ни­му­ма .

Ответ: −26.

Ответ: -26

4. B 15. Най­ди­те наи­мень­шее зна­че­ние функ­ции на от­рез­ке .

Ре­ше­ние.

Най­дем про­из­вод­ную за­дан­ной функ­ции:

 

.

Най­дем нули про­из­вод­ной:

 

Опре­де­лим знаки про­из­вод­ной функ­ции и изоб­ра­зим на ри­сун­ке по­ве­де­ние функ­ции:

 

В точке за­дан­ная функ­ция имеет ми­ни­мум, яв­ля­ю­щий­ся ее наи­мень­шим зна­че­ни­ем на за­дан­ном от­рез­ке. Най­дем это наи­мень­шее зна­че­ние: .

Ответ: 0.

Ответ: 0

5. B 15. Най­ди­те наи­мень­шее зна­че­ние функ­ции .

 

Ре­ше­ние.

Квад­рат­ный трех­член с по­ло­жи­тель­ным стар­шим ко­эф­фи­ци­ен­том до­сти­га­ет наи­мень­ше­го зна­че­ния в точке , в нашем слу­чае — в точке 3. Функ­ция в этой точке опре­де­ле­на и при­ни­ма­ет зна­че­ние . По­сколь­ку ло­га­риф­ми­че­ская функ­ция с ос­но­ва­ни­ем, боль­шим 1, воз­рас­та­ет, най­ден­ное зна­че­ние яв­ля­ет­ся ис­ко­мым наи­мень­шим зна­че­ни­ем за­дан­ной функ­ции.

 

Ответ: 2.

Ответ: 2

6. B 15. Най­ди­те наи­мень­шее зна­че­ние функ­ции на от­рез­ке .

Ре­ше­ние.

Най­дем про­из­вод­ную за­дан­ной функ­ции: Урав­не­ние не имеет ре­ше­ний, про­из­вод­ная по­ло­жи­тель­на при всех зна­че­ни­ях пе­ре­мен­ной, по­это­му за­дан­ная функ­ция яв­ля­ет­ся воз­рас­та­ю­щей.

Сле­до­ва­тель­но, наи­мень­шим зна­че­ни­ем функ­ции на за­дан­ном от­рез­ке яв­ля­ет­ся

 

 

Ответ: 9.

Ответ: 9

7. B 15. Най­ди­те наи­боль­шее зна­че­ние функ­ции на от­рез­ке .

Ре­ше­ние.

Най­дем про­из­вод­ную за­дан­ной функ­ции:

 

Най­дем нули про­из­вод­ной на за­дан­ном от­рез­ке:

 

Опре­де­лим знаки про­из­вод­ной функ­ции на за­дан­ном от­рез­ке и изоб­ра­зим на ри­сун­ке по­ве­де­ние функ­ции:

 

В точке за­дан­ная функ­ция имеет мак­си­мум, яв­ля­ю­щий­ся ее наи­боль­шим зна­че­ни­ем на за­дан­ном от­рез­ке. Най­дем это наи­боль­шее зна­че­ние:

 

.

Ответ: 12.

Ответ: 12

8. B 15. Най­ди­те точку ми­ни­му­ма функ­ции .

Ре­ше­ние.

Най­дем про­из­вод­ную за­дан­ной функ­ции:

 

.

Най­дем нули про­из­вод­ной:

 

Опре­де­лим знаки про­из­вод­ной функ­ции и изоб­ра­зим на ри­сун­ке по­ве­де­ние функ­ции:

 

Ис­ко­мая точка ми­ни­му­ма .

Ответ: −1.

Ответ: -1

9. B 15 Най­ди­те наи­боль­шее зна­че­ние функ­ции на от­рез­ке .

Ре­ше­ние.

Най­дем про­из­вод­ную за­дан­ной функ­ции:

 

Най­дем нули про­из­вод­ной на за­дан­ном от­рез­ке:

 

Опре­де­лим знаки про­из­вод­ной функ­ции на за­дан­ном от­рез­ке и изоб­ра­зим на ри­сун­ке по­ве­де­ние функ­ции:

 

В точке за­дан­ная функ­ция имеет мак­си­мум, яв­ля­ю­щий­ся ее наи­боль­шим зна­че­ни­ем на за­дан­ном от­рез­ке. Най­дем это наи­боль­шее зна­че­ние:

.

Ответ: 20.

Ответ: 20

10. B 15 Най­ди­те точку мак­си­му­ма функ­ции .

 

Вариант № 3654633

1. B 15. Най­ди­те наи­боль­шее зна­че­ние функ­ции на от­рез­ке .

Ре­ше­ние.

Най­дем про­из­вод­ную за­дан­ной функ­ции: Най­ден­ная про­из­вод­ная по­ло­жи­тель­на при всех зна­че­ни­ях пе­ре­мен­ной, по­это­му за­дан­ная функ­ция воз­рас­та­ет. Наи­боль­шим зна­че­ни­ем функ­ции на за­дан­ном от­рез­ке яв­ля­ет­ся

 

Ответ: 42.

Ответ: 42

2. B 15. Най­ди­те точку ми­ни­му­ма функ­ции .

Ре­ше­ние.

Най­дем про­из­вод­ную за­дан­ной функ­ции:

 

Най­дем нули про­из­вод­ной:

 

Опре­де­лим знаки про­из­вод­ной функ­ции и изоб­ра­зим на ри­сун­ке по­ве­де­ние функ­ции:

 

Ис­ко­мая точка ми­ни­му­ма .

Ответ: 2.

Ответ: 2

3. B 15. Най­ди­те наи­мень­шее зна­че­ние функ­ции на от­рез­ке .

Ре­ше­ние.

Най­дем про­из­вод­ную за­дан­ной функ­ции:

 

.

Про­из­вод­ная об­ра­ща­ет­ся в нуль в точ­ках 11 и −11. Опре­де­лим знаки про­из­вод­ной функ­ции и изоб­ра­зим на ри­сун­ке по­ве­де­ние функ­ции на за­дан­ном от­рез­ке:







Дата добавления: 2015-08-30; просмотров: 1410. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Тема 5. Анализ количественного и качественного состава персонала Персонал является одним из важнейших факторов в организации. Его состояние и эффективное использование прямо влияет на конечные результаты хозяйственной деятельности организации.

Билет №7 (1 вопрос) Язык как средство общения и форма существования национальной культуры. Русский литературный язык как нормированная и обработанная форма общенародного языка Важнейшая функция языка - коммуникативная функция, т.е. функция общения Язык представлен в двух своих разновидностях...

Патристика и схоластика как этап в средневековой философии Основной задачей теологии является толкование Священного писания, доказательство существования Бога и формулировка догматов Церкви...

Именные части речи, их общие и отличительные признаки Именные части речи в русском языке — это имя существительное, имя прилагательное, имя числительное, местоимение...

Интуитивное мышление Мышление — это пси­хический процесс, обеспечивающий познание сущности предме­тов и явлений и самого субъекта...

Объект, субъект, предмет, цели и задачи управления персоналом Социальная система организации делится на две основные подсистемы: управляющую и управляемую...

Studopedia.info - Студопедия - 2014-2025 год . (0.014 сек.) русская версия | украинская версия