Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Ре­ше­ние. 25 страница





 

Опре­де­лим знаки про­из­вод­ной функ­ции на за­дан­ном от­рез­ке и изоб­ра­зим на ри­сун­ке по­ве­де­ние функ­ции:

 

В точке за­дан­ная функ­ция имеет ми­ни­мум, яв­ля­ю­щий­ся ее наи­мень­шим зна­че­ни­ем на за­дан­ном от­рез­ке. Най­дем это наи­мень­шее зна­че­ние:

.

Ответ: −6.

Ответ: -6

6. B 15 № 77419. Най­ди­те точку мак­си­му­ма функ­ции .

Ре­ше­ние.

Най­дем про­из­вод­ную за­дан­ной функ­ции:

 

Най­дем нули про­из­вод­ной:

 

Опре­де­лим знаки про­из­вод­ной функ­ции и изоб­ра­зим на ри­сун­ке по­ве­де­ние функ­ции:

 

Ис­ко­мая точка мак­си­му­ма .

Ответ: -4.

Ответ: -4

7. B 15 № 26691. Най­ди­те наи­мень­шее зна­че­ние функ­ции на от­рез­ке .

Ре­ше­ние.

Най­дем про­из­вод­ную за­дан­ной функ­ции:

Най­дем нули про­из­вод­ной на за­дан­ном от­рез­ке:

 

Опре­де­лим знаки про­из­вод­ной функ­ции и изоб­ра­зим на ри­сун­ке по­ве­де­ние функ­ции:

Наи­мень­шим зна­че­ни­ем за­дан­ной функ­ции на от­рез­ке будет .

 

Ответ: −1.

Ответ: -1

8. B 15 № 77452. Най­ди­те наи­мень­шее зна­че­ние функ­ции на от­рез­ке .

Ре­ше­ние.

Най­дем про­из­вод­ную за­дан­ной функ­ции:

 

.

Най­дем нули про­из­вод­ной:

 

Опре­де­лим знаки про­из­вод­ной функ­ции и изоб­ра­зим на ри­сун­ке по­ве­де­ние функ­ции:

 

В точке за­дан­ная функ­ция имеет ми­ни­мум, яв­ля­ю­щий­ся ее наи­мень­шим зна­че­ни­ем на за­дан­ном от­рез­ке. Най­дем это наи­мень­шее зна­че­ние: .

Ответ: −3.

Ответ: -3

9. B 15 № 77439. Най­ди­те точку мак­си­му­ма функ­ции .

Ре­ше­ние.

Най­дем про­из­вод­ную за­дан­ной функ­ции:

 

.

Най­дем нули про­из­вод­ной:

 

Опре­де­лим знаки про­из­вод­ной функ­ции и изоб­ра­зим на ри­сун­ке по­ве­де­ние функ­ции:

 

Ис­ко­мая точка мак­си­му­ма .

Ответ: 6.

Ответ: 6

10. B 15 № 77433. Най­ди­те наи­мень­шее зна­че­ние функ­ции на от­рез­ке .

 

Вариант № 3655808

1. B 15 № 245180. Най­ди­те наи­боль­шее зна­че­ние функ­ции .

 

 

Ре­ше­ние.

По­сколь­ку функ­ция воз­рас­та­ю­щая, она до­сти­га­ет наи­боль­ше­го зна­че­ния в той точке, в ко­то­рой до­сти­га­ет наи­боль­ше­го зна­че­ния вы­ра­же­ние, сто­я­щее под зна­ком ло­га­риф­ма. Квад­рат­ный трех­член с от­ри­ца­тель­ным стар­шим ко­эф­фи­ци­ен­том до­сти­га­ет наи­боль­ше­го зна­че­ния в точке в нашем слу­чае — в точке −1. Зна­че­ние функ­ции в этой точке

 

Ответ: 4.

Ответ: 4

2. B 15 № 503358. Най­ди­те наи­боль­шее зна­че­ние функ­ции на от­рез­ке .

Ре­ше­ние.

Най­дем про­из­вод­ную за­дан­ной функ­ции: Най­ден­ная про­из­вод­ная по­ло­жи­тель­на при всех зна­че­ни­ях пе­ре­мен­ной, по­это­му за­дан­ная функ­ция воз­рас­та­ет. Наи­боль­шим зна­че­ни­ем функ­ции на за­дан­ном от­рез­ке яв­ля­ет­ся

 

Ответ: 42.

Ответ: 42

3. B 15 № 503318. Най­ди­те наи­боль­шее зна­че­ние функ­ции на от­рез­ке .

Ре­ше­ние.

Най­дем про­из­вод­ную за­дан­ной функ­ции:

 

 

Най­ден­ная про­из­вод­ная не­по­ло­жи­тель­на на за­дан­ном от­рез­ке, за­дан­ная функ­ция убы­ва­ет на нем, по­это­му наи­боль­шим зна­че­ни­ем функ­ции на от­рез­ке яв­ля­ет­ся

 

Ответ: 26.

Ответ: 26

4. B 15 № 26723. Най­ди­те точку ми­ни­му­ма функ­ции .

Ре­ше­ние.

Най­дем про­из­вод­ную за­дан­ной функ­ции:

 

Най­дем нули про­из­вод­ной:

 

Опре­де­лим знаки про­из­вод­ной функ­ции и изоб­ра­зим на ри­сун­ке по­ве­де­ние функ­ции:

Ис­ко­мая точка ми­ни­му­ма .

Ответ: 10.

Ответ: 10

5. B 15 № 77456. Най­ди­те наи­боль­шее зна­че­ние функ­ции на от­рез­ке .

Ре­ше­ние.

Най­дем про­из­вод­ную за­дан­ной функ­ции:

 

.

Най­дем нули про­из­вод­ной:

Опре­де­лим знаки про­из­вод­ной функ­ции и изоб­ра­зим на ри­сун­ке по­ве­де­ние функ­ции:

Най­ден­ная про­из­вод­ная не­от­ри­ца­тель­на на от­рез­ке [0; 1] и не­по­ло­жи­тель­на на от­рез­ке [1; 4]; за­дан­ная функ­ция воз­рас­та­ет на от­рез­ке [0; 1] и убы­ва­ет на от­рез­ке [1; 4]. В точке 1 функ­ция при­ни­ма­ет наи­боль­шее зна­че­ние. Най­дем его: .

Ответ: 1.

Ответ: 1

6. B 15 № 77440. Най­ди­те точку ми­ни­му­ма функ­ции .

Ре­ше­ние.

Най­дем про­из­вод­ную за­дан­ной функ­ции:

 

.

Най­дем нули про­из­вод­ной:

 

Опре­де­лим знаки про­из­вод­ной функ­ции и изоб­ра­зим на ри­сун­ке по­ве­де­ние функ­ции:

 

Ис­ко­мая точка ми­ни­му­ма .

Ответ: 0.

Ответ: 0

7. B 15 № 26734. Най­ди­те точку ми­ни­му­ма функ­ции .

Ре­ше­ние.

Най­дем про­из­вод­ную за­дан­ной функ­ции:

 

Най­дем нули про­из­вод­ной:

 

Опре­де­лим знаки про­из­вод­ной функ­ции и изоб­ра­зим на ри­сун­ке по­ве­де­ние функ­ции:

 

Ис­ко­мая точка ми­ни­му­ма .

Ответ: −2,5.

Ответ: -2,5

8. B 15 № 77420. Най­ди­те точку ми­ни­му­ма функ­ции .

Ре­ше­ние.

Най­дем про­из­вод­ную за­дан­ной функ­ции:

 

Най­дем нули про­из­вод­ной:

 

Опре­де­лим знаки про­из­вод­ной функ­ции и изоб­ра­зим на ри­сун­ке по­ве­де­ние функ­ции:

Ис­ко­мая точка ми­ни­му­ма .

Ответ: 4.

Ответ: 4

9. B 15 № 26725. Най­ди­те точку мак­си­му­ма функ­ции .

Ре­ше­ние.

Най­дем про­из­вод­ную за­дан­ной функ­ции:

 

Най­дем нули про­из­вод­ной:

 

Опре­де­лим знаки про­из­вод­ной функ­ции и изоб­ра­зим на ри­сун­ке по­ве­де­ние функ­ции:

Ис­ко­мая точка мак­си­му­ма .

Ответ: 10.

Ответ: 10

10. B 15 № 77428. Най­ди­те точку ми­ни­му­ма функ­ции .

 

 

Вариант № 3655833

1. B 15 № 245179. Най­ди­те наи­мень­шее зна­че­ние функ­ции .

 

Ре­ше­ние.

Квад­рат­ный трех­член с по­ло­жи­тель­ным стар­шим ко­эф­фи­ци­ен­том до­сти­га­ет наи­мень­ше­го зна­че­ния в точке , в нашем слу­чае — в точке 3. Функ­ция в этой точке опре­де­ле­на и при­ни­ма­ет зна­че­ние . По­сколь­ку ло­га­риф­ми­че­ская функ­ция с ос­но­ва­ни­ем, боль­шим 1, воз­рас­та­ет, най­ден­ное зна­че­ние яв­ля­ет­ся ис­ко­мым наи­мень­шим зна­че­ни­ем за­дан­ной функ­ции.

 

Ответ: 2.

Ответ: 2

2. B 15 № 77473. Най­ди­те наи­мень­шее зна­че­ние функ­ции на от­рез­ке .

Ре­ше­ние.

Най­дем про­из­вод­ную за­дан­ной функ­ции:

 

.

 

Най­дем нули про­из­вод­ной:

 

 

Опре­де­лим знаки про­из­вод­ной функ­ции и изоб­ра­зим на ри­сун­ке по­ве­де­ние функ­ции:

 

В точке за­дан­ная функ­ция имеет ми­ни­мум, яв­ля­ю­щий­ся ее наи­мень­шим зна­че­ни­ем на за­дан­ном от­рез­ке. Най­дем это наи­мень­шее зна­че­ние: .

 

Ответ: 12.

Ответ: 12

3. B 15 № 26716. Най­ди­те наи­мень­шее зна­че­ние функ­ции на от­рез­ке .

Ре­ше­ние.

Най­дем про­из­вод­ную за­дан­ной функ­ции:

 

Най­дем нули про­из­вод­ной на за­дан­ном от­рез­ке:

 

Опре­де­лим знаки про­из­вод­ной функ­ции на за­дан­ном от­рез­ке и изоб­ра­зим на ри­сун­ке по­ве­де­ние функ­ции:

В точке за­дан­ная функ­ция имеет ми­ни­мум, яв­ля­ю­щий­ся ее наи­мень­шим зна­че­ни­ем на за­дан­ном от­рез­ке. Най­дем это наи­мень­шее зна­че­ние:

 

.

Ответ: −18.

Ответ: -18

4. B 15 № 26734. Най­ди­те точку ми­ни­му­ма функ­ции .

Ре­ше­ние.

Най­дем про­из­вод­ную за­дан­ной функ­ции:

 

Най­дем нули про­из­вод­ной:

 

Опре­де­лим знаки про­из­вод­ной функ­ции и изоб­ра­зим на ри­сун­ке по­ве­де­ние функ­ции:

 

Ис­ко­мая точка ми­ни­му­ма .

Ответ: −2,5.

Ответ: -2,5

5. B 15 № 26712. Най­ди­те точку ми­ни­му­ма функ­ции .

Ре­ше­ние.

Най­дем про­из­вод­ную за­дан­ной функ­ции:

 

Най­дем нули про­из­вод­ной:

 

Опре­де­лим знаки про­из­вод­ной функ­ции и изоб­ра­зим на ри­сун­ке по­ве­де­ние функ­ции:

 

Ис­ко­мая точка ми­ни­му­ма .

Ответ: 4.

Ответ: 4

6. B 15 № 26722. Най­ди­те точку мак­си­му­ма функ­ции .

Ре­ше­ние.

Функ­ция опре­де­ле­на и диф­фе­рен­ци­ру­е­ма на . Най­дем про­из­вод­ную за­дан­ной функ­ции:

 

Най­дем нули про­из­вод­ной:

 

Опре­де­лим знаки про­из­вод­ной функ­ции и изоб­ра­зим на ри­сун­ке по­ве­де­ние функ­ции:

Ис­ко­мая точка мак­си­му­ма .

Ответ: −4,5.

Ответ: -4,5

7. B 15 № 282859. Най­ди­те точку мак­си­му­ма функ­ции .

Ре­ше­ние.

Най­дем про­из­вод­ную за­дан­ной функ­ции:

 

Най­дем нули про­из­вод­ной:

Опре­де­лим знаки про­из­вод­ной функ­ции и изоб­ра­зим на ри­сун­ке по­ве­де­ние функ­ции:

 

Ис­ко­мая точка мак­си­му­ма .

Ответ: 2.

Ответ: 2

8. B 15 № 77453. Най­ди­те точку ми­ни­му­ма функ­ции .

Ре­ше­ние.

Най­дем про­из­вод­ную за­дан­ной функ­ции:

 

.

Най­дем нули про­из­вод­ной:

 

Опре­де­лим знаки про­из­вод­ной функ­ции и изоб­ра­зим на ри­сун­ке по­ве­де­ние функ­ции:

 

Ис­ко­мая точка ми­ни­му­ма .

Ответ: 4.

Ответ: 4

9. B 15 № 77491. Най­ди­те точку ми­ни­му­ма функ­ции .

Ре­ше­ние.

Най­дем про­из­вод­ную за­дан­ной функ­ции:

 

Най­дем нули про­из­вод­ной:

 

Опре­де­лим знаки про­из­вод­ной функ­ции и изоб­ра­зим на ри­сун­ке по­ве­де­ние функ­ции:

 

Ис­ко­мая точка ми­ни­му­ма .

Ответ: 1.

Ответ: 1

10. B 15 № 315128. Най­ди­те наи­боль­шее зна­че­ние функ­ции на от­рез­ке .

 

 

Вариант № 3655890

1. B 15. Най­ди­те наи­мень­шее зна­че­ние функ­ции на от­рез­ке .

Ре­ше­ние.

Най­дем про­из­вод­ную за­дан­ной функ­ции:

 

.

Най­дем нули про­из­вод­ной:

 

.

Опре­де­лим знаки про­из­вод­ной функ­ции и изоб­ра­зим на ри­сун­ке по­ве­де­ние функ­ции:

 

В точке за­дан­ная функ­ция имеет ми­ни­мум, яв­ля­ю­щий­ся ее наи­мень­шим зна­че­ни­ем на за­дан­ном от­рез­ке. Най­дем это наи­мень­шее зна­че­ние:

 

.

Ответ: −9.

Ответ: -9

2. B 15 № 77452. Най­ди­те наи­мень­шее зна­че­ние функ­ции на от­рез­ке .

Ре­ше­ние.

Най­дем про­из­вод­ную за­дан­ной функ­ции:

 

.

Най­дем нули про­из­вод­ной:

 

Опре­де­лим знаки про­из­вод­ной функ­ции и изоб­ра­зим на ри­сун­ке по­ве­де­ние функ­ции:

 

В точке за­дан­ная функ­ция имеет ми­ни­мум, яв­ля­ю­щий­ся ее наи­мень­шим зна­че­ни­ем на за­дан­ном от­рез­ке. Най­дем это наи­мень­шее зна­че­ние: .

Ответ: −3.

Ответ: -3

3. B 15 № 26734. Най­ди­те точку ми­ни­му­ма функ­ции .

Ре­ше­ние.

Най­дем про­из­вод­ную за­дан­ной функ­ции:

 

Най­дем нули про­из­вод­ной:

 

Опре­де­лим знаки про­из­вод­ной функ­ции и изоб­ра­зим на ри­сун­ке по­ве­де­ние функ­ции:

 

Ис­ко­мая точка ми­ни­му­ма .

Ответ: −2,5.

Ответ: -2,5

4. B 15 № 26711. Най­ди­те точку мак­си­му­ма функ­ции .

Ре­ше­ние.

Най­дем про­из­вод­ную за­дан­ной функ­ции:

 

 

Най­дем нули про­из­вод­ной:

 

 

 

Опре­де­лим знаки про­из­вод­ной функ­ции и изоб­ра­зим на ри­сун­ке по­ве­де­ние функ­ции:

Ис­ко­мая точка мак­си­му­ма .

 

Ответ: 8.

Ответ: 8

5. B 15 № 129871. Най­ди­те точку мак­си­му­ма функ­ции .

Ре­ше­ние.

Най­дем про­из­вод­ную за­дан­ной функ­ции:

 

.

Най­дем нули про­из­вод­ной:

 

Опре­де­лим знаки про­из­вод­ной функ­ции и изоб­ра­зим на ри­сун­ке по­ве­де­ние функ­ции:

 

Ис­ко­мая точка мак­си­му­ма .

Ответ: 18.

Ответ: 18

6. B 15 № 245175. Най­ди­те наи­мень­шее зна­че­ние функ­ции .

 

 

Ре­ше­ние.

Вы­де­лим пол­ный квад­рат:

 

 

От­сю­да имеем:

 

 

По­это­му наи­мень­шее знач­ние функ­ции до­сти­га­ет­ся в точке 3, и оно равно 2.

 

 

Ответ: 2.

 

При­ме­ча­ние.

При­ве­дем дру­гое ре­ше­ние.

 

По­сколь­ку функ­ция воз­рас­та­ю­щая, а под­ко­рен­ное вы­ра­же­ние по­ло­жи­тель­но при всех зна­че­ни­ях пе­ре­мен­ной, за­дан­ная функ­ция до­сти­га­ет наи­мень­ше­го зна­че­ния в той же точке, в ко­то­рой до­сти­га­ет наи­мень­ше­го зна­че­ния под­ко­рен­ное вы­ра­же­ние. Квад­рат­ный трех­член с по­ло­жи­тель­ным стар­шим ко­эф­фи­ци­ен­том до­сти­га­ет наи­мень­ше­го зна­че­ния в точке , в нашем слу­чае — в точке 3, и оно равно 4. Сле­до­ва­тель­но, наи­мень­шее зна­че­ние за­дан­ной функ­ции .







Дата добавления: 2015-08-30; просмотров: 905. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Педагогическая структура процесса социализации Характеризуя социализацию как педагогический процессе, следует рассмотреть ее основные компоненты: цель, содержание, средства, функции субъекта и объекта...

Типовые ситуационные задачи. Задача 1. Больной К., 38 лет, шахтер по профессии, во время планового медицинского осмотра предъявил жалобы на появление одышки при значительной физической   Задача 1. Больной К., 38 лет, шахтер по профессии, во время планового медицинского осмотра предъявил жалобы на появление одышки при значительной физической нагрузке. Из медицинской книжки установлено, что он страдает врожденным пороком сердца....

Типовые ситуационные задачи. Задача 1.У больного А., 20 лет, с детства отмечается повышенное АД, уровень которого в настоящее время составляет 180-200/110-120 мм рт Задача 1.У больного А., 20 лет, с детства отмечается повышенное АД, уровень которого в настоящее время составляет 180-200/110-120 мм рт. ст. Влияние психоэмоциональных факторов отсутствует. Колебаний АД практически нет. Головной боли нет. Нормализовать...

Репродуктивное здоровье, как составляющая часть здоровья человека и общества   Репродуктивное здоровье – это состояние полного физического, умственного и социального благополучия при отсутствии заболеваний репродуктивной системы на всех этапах жизни человека...

Случайной величины Плотностью распределения вероятностей непрерывной случайной величины Х называют функцию f(x) – первую производную от функции распределения F(x): Понятие плотность распределения вероятностей случайной величины Х для дискретной величины неприменима...

Схема рефлекторной дуги условного слюноотделительного рефлекса При неоднократном сочетании действия предупреждающего сигнала и безусловного пищевого раздражителя формируются...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия