Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Ре­ше­ние. 18 страница





Ре­ше­ние.

Рас­смот­рим пря­мо­уголь­ный тре­уголь­ник катет ко­то­ро­го яв­ля­ет­ся боль­шей диа­го­на­лью ос­но­ва­ния. Длина боль­шей диа­го­на­ли пра­виль­но­го ше­сти­уголь­ни­ка равна его удво­ен­ной сто­ро­не: . По­сколь­ку имеем:

Ответ: 2.

Ответ: 2

9. B 13. Сто­ро­ны ос­но­ва­ния пра­виль­ной ше­сти­уголь­ной пи­ра­ми­ды равны 10, бо­ко­вые ребра равны 13. Най­ди­те пло­щадь бо­ко­вой по­верх­но­сти этой пи­ра­ми­ды.

Ре­ше­ние.

Пло­щадь бо­ко­вой по­верх­но­сти пи­ра­ми­ды равна

 

,

где – пе­ри­метр ос­но­ва­ния, а –апо­фе­ма. Апо­фе­му най­дем по тео­ре­ме Пи­фа­го­ра: . Тогда пло­щадь бо­ко­вой по­верх­но­сти

 

Ответ: 360.

Ответ: 360

10. B 13. Диа­метр ос­но­ва­ния ко­ну­са равен 6, а угол при вер­ши­не осе­во­го се­че­ния равен 90°. Вы­чис­ли­те объем ко­ну­са, де­лен­ный на . Ре­ше­ние.

В тре­уголь­ни­ке, об­ра­зо­ван­ном ра­ди­у­сом ос­но­ва­ния r, вы­со­той h и об­ра­зу­ю­щей ко­ну­са l, углы при об­ра­зу­ю­щей равны, по­это­му вы­со­та ко­ну­са равна ра­ди­у­су его ос­но­ва­ния: h = r. Тогда объем ко­ну­са, де­лен­ный на вы­чис­ля­ет­ся сле­ду­ю­щим об­ра­зом:

 

Ответ: 9.

Ответ: 9

 

Вариант № 3714834

1. B 14. Пер­вый насос на­пол­ня­ет бак за 20 минут, вто­рой — за 30 минут, а тре­тий — за 1 час. За сколь­ко минут на­пол­нят бак три на­со­са, ра­бо­тая од­но­вре­мен­но?

Ре­ше­ние.

Обо­зна­чим объем бака за 1. Тогда три на­со­са, ра­бо­тая вме­сте, за­пол­нят бак за

 

минут.

Ответ: 10.

При­ве­дем дру­гое ре­ше­ние.

Пер­вый насос за ми­ну­ту на­пол­ня­ет одну два­дца­тую бака, вто­рой — одну трид­ца­тую, тре­тий — одну ше­сти­де­ся­тую. Ра­бо­тая вме­сте, за ми­ну­ту они на­пол­нят шесть ше­сти­де­ся­тых или одну де­ся­тую бака. Зна­чит, весь бак на­со­сы на­пол­нят за 10 минут.

 

При­ве­дем дру­гое ре­ше­ние.

За один час пер­вый насос на­пол­нит 3 бака, вто­рой — 2 бака, а тре­тий — 1 бак. Ра­бо­тая вме­сте, за один час они 6 баков. Зна­чит, один бак на­со­сы на­пол­нят в шесть раз быст­рее, т. е. за 10 минут.

Ответ: 10

2. B 14. Пер­вый сплав со­дер­жит 10% меди, вто­рой – 40% меди. Масса вто­ро­го спла­ва боль­ше массы пер­во­го на 3 кг. Из этих двух спла­вов по­лу­чи­ли тре­тий сплав, со­дер­жа­щий 30% меди. Най­ди­те массу тре­тье­го спла­ва. Ответ дайте в ки­ло­грам­мах.

Ре­ше­ние.

Пусть масса пер­во­го спла­ва кг, а масса вто­ро­го – кг, масса тре­тье­го спла­ва – кг. Пер­вый сплав со­дер­жит 10% меди, вто­рой – 40% меди, тре­тий сплав – 30% меди. Тогда:

 

Ответ: 9.

Ответ: 9

3. B 14. На из­го­тов­ле­ние 99 де­та­лей пер­вый ра­бо­чий тра­тит на 2 часа мень­ше, чем вто­рой ра­бо­чий на из­го­тов­ле­ние 110 таких же де­та­лей. Из­вест­но, что пер­вый ра­бо­чий за час де­ла­ет на 1 де­таль боль­ше, чем вто­рой. Сколь­ко де­та­лей в час де­ла­ет вто­рой ра­бо­чий?

Ре­ше­ние.

Обо­зна­чим — число де­та­лей, ко­то­рые из­го­тав­ли­ва­ет за час вто­рой ра­бо­чий. Тогда пер­вый ра­бо­чий за час из­го­тав­ли­ва­ет де­таль. На из­го­тов­ле­ние 99 де­та­лей пер­вый ра­бо­чий тра­тит на 2 часа мень­ше, чем вто­рой ра­бо­чий на из­го­тов­ле­ние 110 таких же де­та­лей, от­сю­да имеем:

 

.

Таким об­ра­зом, вто­рой ра­бо­чий де­ла­ет 10 де­та­лей в час.

Ответ: 10.

Ответ: 10

4. B 14. Пер­вый ве­ло­си­пе­дист вы­ехал из по­сел­ка по шоссе со ско­ро­стью 15 км/ч. Через час после него со ско­ро­стью 10 км/ч из того же по­сел­ка в том же на­прав­ле­нии вы­ехал вто­рой ве­ло­си­пе­дист, а еще через час после этого – тре­тий. Най­ди­те ско­рость тре­тье­го ве­ло­си­пе­ди­ста, если сна­ча­ла он до­гнал вто­ро­го, а через 2 часа 20 минут после этого до­гнал пер­во­го. Ответ дайте в км/ч.

Ре­ше­ние.

Пусть км/ч – ско­рость тре­тье­го ве­ло­си­пе­ди­ста, а ч – время, ко­то­рое по­на­до­би­лось ему, чтобы до­гнать вто­ро­го ве­ло­си­пе­ди­ста. Таким об­ра­зом,

 

.

А через 2 часа 20 минут после этого до­гнал пер­во­го. Таким об­ра­зом,

 

Таким об­ра­зом, .

Ответ: 25.

Ответ: 25

5. B 14. Два че­ло­ве­ка от­прав­ля­ют­ся из од­но­го и того же места на про­гул­ку до опуш­ки леса, на­хо­дя­щей­ся в 4,4 км от места от­прав­ле­ния. Один идёт со ско­ро­стью 2,5 км/ч, а дру­гой — со ско­ро­стью 3 км/ч. Дойдя до опуш­ки, вто­рой с той же ско­ро­стью воз­вра­ща­ет­ся об­рат­но. На каком рас­сто­я­нии от точки от­прав­ле­ния про­изойдёт их встре­ча?

Ре­ше­ние.

Пусть x ч — время, про­шед­шее от на­ча­ла дви­же­ния до мо­мен­та встре­чи пе­ше­хо­дов. Тогда к мо­мен­ту их встре­чи тот, кто шёл мед­лен­нее, прошёл 2,5 x км, а тот, кто шёл быст­рее, прошёл 4,4 км до опуш­ки и ещё 3 x км в об­рат­ном на­прав­ле­нии. Пе­ше­хо­ды встре­ти­лись на одном и том же рас­сто­я­нии от опуш­ки, по­это­му рас­сто­я­ние, ко­то­рое ещё оста­лось прой­ти до опуш­ки более мед­лен­но­му из них, равно рас­сто­я­нию, на ко­то­рое более быст­рый от неё уже уда­лил­ся. Сле­до­ва­тель­но, 4,4 − 2,5 х = 3 х − 4,4, от­ку­да х = 1,6 ч, а ис­ко­мое рас­сто­я­ние равно 2,5 · 1,8 = 4 км.

 

При­ве­дем дру­гое ре­ше­ние.

Тот, кто идет быст­рее, дой­дет до опуш­ки за 4,4: 3 = 22/15 часа. За это время тот, кто идет мед­лен­нее, прой­дет 2,5 · 22/15 = 11/3 км и ока­жет­ся на рас­сто­я­нии 4,4 − 11/3 = 11/15 км от опуш­ки. Далее они пой­дут на встре­чу друг другу со ско­ро­стью сбли­же­ния 5,5 км/час и пре­одо­ле­ют раз­де­ля­ю­щее их рас­сто­я­ние за (11/15): 5,5 = 2/15 часа. За это время мед­лен­но иду­щий пе­ше­ход прой­дет еще 2,5 · 2/15 = 1/3 км и ока­жет­ся на рас­сто­я­нии 11/3 + 1/3 = 4 км от точки от­прав­ле­ния.

Ответ: 4.

Ответ: 4

6. B 14. Из го­ро­дов и , рас­сто­я­ние между ко­то­ры­ми равно 330 км, нав­стре­чу друг другу од­но­вре­мен­но вы­еха­ли два ав­то­мо­би­ля и встре­ти­лись через 3 часа на рас­сто­я­нии 180 км от го­ро­да . Най­ди­те ско­рость ав­то­мо­би­ля, вы­ехав­ше­го из го­ро­да . Ответ дайте в км/ч.

Ре­ше­ние.

Ав­то­мо­биль, вы­ехав­ший из го­ро­да , пре­одо­лел рас­сто­я­ние (330 – 180) км = 150 км за 3 часа. Пусть км/ч – ско­рость дан­но­го ав­то­мо­би­ля. Таким об­ра­зом,

 

км/ч.

Ответ: 50.

Ответ: 50

7. B 14. Из одной точки кру­го­вой трас­сы, длина ко­то­рой равна 14 км, од­но­вре­мен­но в одном на­прав­ле­нии стар­то­ва­ли два ав­то­мо­би­ля. Ско­рость пер­во­го ав­то­мо­би­ля равна 80 км/ч, и через 40 минут после стар­та он опе­ре­жал вто­рой ав­то­мо­биль на один круг. Най­ди­те ско­рость вто­ро­го ав­то­мо­би­ля. Ответ дайте в км/ч.

Ре­ше­ние.

Пусть ско­рость вто­ро­го ав­то­мо­би­ля равна км/ч. За 2/3 часа пер­вый ав­то­мо­биль про­шел на 14 км боль­ше, чем вто­рой, от­сю­да имеем

 

.

Ответ: 59.

Ответ: 59

8. B 14. Кли­ент А. сде­лал вклад в банке в раз­ме­ре 6200 руб­лей. Про­цен­ты по вкла­ду на­чис­ля­ют­ся раз в год и при­бав­ля­ют­ся к те­ку­щей сумме вкла­да. Ровно через год на тех же усло­ви­ях такой же вклад в том же банке сде­лал Б. Ещё ровно через год кли­ен­ты А. и Б. за­кры­ли вкла­ды и за­бра­ли все на­ко­пив­ши­е­ся день­ги. При этом кли­ент А. по­лу­чил на 682 рубля боль­ше кли­ен­та Б. Какой про­цент го­до­вых на­чис­лял банк по этим вкла­дам?

Ре­ше­ние.

Если в банк под про­цен­тов го­до­вых по­ло­же­на сумма , то через лет она ста­нет рав­ной По­это­му кли­ент А. за два года по­лу­чил руб., а кли­ент B. за год по­лу­чил По усло­вию, от­ку­да имеем:

 

 

Тем самым, банк на­чис­лял 10 про­цен­тов го­до­вых.

 

Ответ: 10.

Ответ: 10

B 14.

Пер­вая труба на­пол­ня­ет ре­зер­ву­ар на 6 минут доль­ше, чем вто­рая. Обе трубы на­пол­ня­ют этот же ре­зер­ву­ар за 4 ми­ну­ты. За сколь­ко минут на­пол­ня­ет этот ре­зер­ву­ар одна вто­рая труба?

 

Ре­ше­ние.

Пусть вто­рая труба на­пол­ня­ет ре­зер­ву­ар за x минут, а пер­вая — за x + 6 минут. В одну ми­ну­ту они на­пол­ня­ют со­от­вет­ствен­но и часть ре­зер­ву­а­ра. По­сколь­ку за 4 ми­ну­ты обе трубы за­пол­ня­ют весь ре­зер­ву­ар, за одну ми­ну­ту они на­пол­ня­е­ют одну чет­вер­тую часть ре­зер­ву­а­ра:

 

.

 

Далее можно ре­шать по­лу­чен­ное урав­не­ние. Но можно за­ме­тить, что при по­ло­жи­тель­ных x функ­ция, на­хо­дя­ща­я­ся в левой части урав­не­ния, убы­ва­ет. По­это­му оче­вид­ное ре­ше­ние урав­не­ния — един­ствен­но. По­сколь­ку вто­рая труба за­пол­ня­ет ре­зер­ву­а­ра в ми­ну­ту, она за­пол­нит весь ре­зер­ву­ар за 6 минут.

Ответ: 6.

Ответ: 6

10. B 14. В по­мощь са­до­во­му на­со­су, пе­ре­ка­чи­ва­ю­ще­му 5 лит­ров воды за 2 ми­ну­ты, под­клю­чи­ли вто­рой насос, пе­ре­ка­чи­ва­ю­щий тот же объем воды за 3 ми­ну­ты. Сколь­ко минут эти два на­со­са долж­ны ра­бо­тать сов­мест­но, чтобы пе­ре­ка­чать 25 лит­ров воды?

 

 

Вариант № 3714930

1. B 14. Ви­но­град со­дер­жит 90% влаги, а изюм — 5%. Сколь­ко ки­ло­грам­мов ви­но­гра­да тре­бу­ет­ся для по­лу­че­ния 20 ки­ло­грам­мов изюма?

Ре­ше­ние.

Ви­но­град со­дер­жит 10% пи­та­тель­но­го ве­ще­ства, а изюм — 95%. По­это­му 20 кг изюма со­дер­жат кг пи­та­тель­но­го ве­ще­ства. Таким об­ра­зом, для по­лу­че­ния 20 ки­ло­грам­мов изюма тре­бу­ет­ся кг ви­но­гра­да.

 

Ответ: 190.

Ответ: 190

2. B 14. То­вар­ный поезд каж­дую ми­ну­ту про­ез­жа­ет на 750 мет­ров мень­ше, чем ско­рый, и на путь в 180 км тра­тит вре­ме­ни на 2 часа боль­ше, чем ско­рый. Най­ди­те ско­рость то­вар­но­го по­ез­да. Ответ дайте в км/ч.

Ре­ше­ние.

Ско­рость то­вар­но­го по­ез­да мень­ше, чем ско­ро­го на 750 м/мин или на

 

.

Пусть км/ч — ско­рость то­вар­но­го по­ез­да, тогда ско­рость ско­ро­го по­ез­да км/ч. На путь в 180 км то­вар­ный поезд тра­тит вре­ме­ни на 2 часа боль­ше, чем ско­рый, от­сю­да имеем:

 

Ответ: 45.

Ответ: 45

3. B 14. Часы со стрел­ка­ми по­ка­зы­ва­ют 3 часа ровно. Через сколь­ко минут ми­нут­ная стрел­ка в де­вя­тый раз по­рав­ня­ет­ся с ча­со­вой?

Ре­ше­ние.

Ско­рость дви­же­ния ми­нут­ной стрел­ки 12 де­ле­ний/час (под одним де­ле­ни­ем здесь под­ра­зу­ме­ва­ет­ся рас­сто­я­ние между со­сед­ни­ми циф­ра­ми на ци­фер­бла­те часов), а ча­со­вой – 1 де­ле­ние/час. До де­вя­той встре­чи ми­нут­ной и ча­со­вой стре­лок ми­нут­ная долж­на сна­ча­ла 8 раз «обо­гнать» ча­со­вую, то есть прой­ти 8 кру­гов по 12 де­ле­ний. Пусть после этого до по­след­ней встре­чи ча­со­вая стрел­ка прой­дет де­ле­ний. Тогда общий путь ми­нут­ной стрел­ки скла­ды­ва­ет­ся из най­ден­ных 96 де­ле­ний, ещё 3 из­на­чаль­но раз­де­ля­ю­щих их де­ле­ний (по­сколь­ку часы по­ка­зы­ва­ют 3 часа) и по­след­них L де­ле­ний. При­рав­ня­ем время дви­же­ния для ча­со­вой и ми­нут­ной стре­лок:

 

.

 

Ча­со­вая стрел­ка прой­дет 9 де­ле­ний, что со­от­вет­ству­ет 9 часам или 540 ми­ну­там.

 

Ответ: 540.

 

 

По прось­бам чи­та­те­лей по­ме­ща­ем общее ре­ше­ние.

Ско­рость вра­ще­ния ча­со­вой стрел­ки равна 0,5 гра­ду­са в ми­ну­ту, а ми­нут­ной — 6 гра­ду­сов в ми­ну­ту. По­это­му когда часы по­ка­зы­ва­ют время h часов m минут ча­со­вая стрел­ка по­вер­ну­та на 30 h + 0,5 m гра­ду­сов, а ми­нут­ная — на 6 m гра­ду­сов от­но­си­тель­но 12-ча­со­во­го де­ле­ния.

Пусть в пер­вый раз стрел­ки встре­тят­ся через t 1 минут. Тогда если ми­нут­ная стрел­ка еще не опе­ре­жа­ла ча­со­вую в те­че­ние те­ку­ще­го часа, то 6 m + 6 t 1 = 30 h + 0,5 m + 0,5 t 1, т. е. t 1 = (60 h − 11 m)/11 (*). В про­ти­во­по­лож­ном слу­чае по­лу­ча­ем урав­не­ние 6 m + 6 t 1 = 30 h + 0,5 m + 0,5 t 1 + 360, от­ку­да t 1 = (60 h − 11 m + 720)/11 (**).

Пусть во вто­рой раз стрел­ки встре­тят­ся через t 2 минут после пер­во­го, тогда 0,5 t 2 = 6 t 2 − 360, от­ку­да t 2 = 720/11 (***). Это же верно для каж­до­го сле­ду­ю­ще­го обо­ро­та.

По­это­му для встре­чи с но­ме­ром n из (*) и (**) с уче­том (***) имеем со­от­вет­ствен­но: tn = (60 h − 11 m + 720(n − 1))/11 или tn = (60 h − 11 m + 720 n)/11.

Ответ: 540

4. B 14. По двум па­рал­лель­ным же­лез­но­до­рож­ным путям друг нав­стре­чу другу сле­ду­ют ско­рый и пас­са­жир­ский по­ез­да, ско­ро­сти ко­то­рых равны со­от­вет­ствен­но 65 км/ч и 35 км/ч. Длина пас­са­жир­ско­го по­ез­да равна 700 мет­рам. Най­ди­те длину ско­ро­го по­ез­да, если время, за ко­то­рое он про­шел мимо пас­са­жир­ско­го по­ез­да, равно 36 се­кун­дам. Ответ дайте в мет­рах.

Ре­ше­ние.

От­но­си­тель­ная ско­рость по­ез­дов равна

 

За 36 се­кунд один поезд про­хо­дит мимо дру­го­го, то есть вме­сте по­ез­да пре­одо­ле­ва­ют рас­сто­я­ние, рав­ное сумме их длин:

 

м,

по­это­му длина ско­ро­го по­ез­да

Ответ: 300.

Ответ: 300

5. B 14. Ве­ло­си­пе­дист вы­ехал с по­сто­ян­ной ско­ро­стью из го­ро­да А в город В, рас­сто­я­ние между ко­то­ры­ми равно 128 км. На сле­ду­ю­щий день он от­пра­вился об­рат­но в А со ско­ро­стью на 8 км/ч боль­ше преж­ней. По до­ро­ге он сде­лал оста­нов­ку на 8 часов. В ре­зуль­та­те ве­ло­си­пе­дист за­тра­тил на об­рат­ный путь столь­ко же вре­ме­ни, сколь­ко на путь из А в В. Най­ди­те ско­рость ве­ло­си­пе­ди­ста на пути из В в А. Ответ дайте в км/ч.

Ре­ше­ние.

Пусть ве­ло­си­пе­дист ехал из А в В со ско­ро­стью км/час, тогда об­рат­но он ехал со ско­ро­стью км/час. Раз­ность вре­мен на пути туда и об­рат­но со­став­ля­ет 8 часов, от­ку­да имеем:

 

 

Ис­ко­мая ско­рость ве­ло­си­пе­ди­ста на об­рат­ном пути на 8 км/час боль­ше, по­это­му она равна 16 км/час.

 

Ответ: 16.

Ответ: 16

6. B 14. Два мо­то­цик­ли­ста стар­ту­ют од­но­вре­мен­но в одном на­прав­ле­нии из двух диа­мет­раль­но про­ти­во­по­лож­ных точек кру­го­вой трас­сы, длина ко­то­рой равна 14 км. Через сколь­ко минут мо­то­цик­ли­сты по­рав­ня­ют­ся в пер­вый раз, если ско­рость од­но­го из них на 21 км/ч боль­ше ско­ро­сти дру­го­го?

Ре­ше­ние.

Пусть км/ч — ско­рость пер­во­го мо­то­цик­ли­ста, тогда ско­рость вто­ро­го мо­то­цик­ли­ста равна км/ч. Пусть пер­вый раз мо­то­цик­ли­сты по­рав­ня­ют­ся через часов. Для того, чтобы мо­то­цик­ли­сты по­рав­ня­лись, более быст­рый дол­жен пре­одо­леть из­на­чаль­но раз­де­ля­ю­щее их рас­сто­я­ние, рав­ное по­ло­ви­не длины трас­сы. По­это­му

 

.

Таким об­ра­зом, мо­то­цик­ли­сты по­рав­ня­ют­ся через часа или через 20 минут.

 

Ответ: 20.

При­ведём дру­гое ре­ше­ние.

Быст­рый мо­то­цик­лист дви­жет­ся от­но­си­тель­но мед­лен­но­го со ско­ро­стью 21 км в час, и дол­жен пре­одо­леть раз­де­ля­ю­щие их 7 км. Сле­до­ва­тель­но, на это ему по­тре­бу­ет­ся одна треть часа.

Ответ: 20

7. B 14. От при­ста­ни A к при­ста­ни B от­пра­вил­ся с по­сто­ян­ной ско­ро­стью пер­вый теп­ло­ход, а через 1 час после этого сле­дом за ним со ско­ро­стью на 1 км/ч боль­шей от­пра­вил­ся вто­рой. Рас­сто­я­ние между при­ста­ня­ми равно 420 км. Най­ди­те ско­рость пер­во­го теп­ло­хо­да, если в пункт B оба теп­ло­хо­да при­бы­ли од­но­вре­мен­но. Ответ дайте в км/ч.

Ре­ше­ние.

Пусть км/ч — ско­рость пер­во­го теп­ло­хо­да, тогда ско­рость вто­ро­го теп­ло­хо­да по те­че­нию равна км/ч. Пер­вый теп­ло­ход на­хо­дил­ся в пути на 1 час боль­ше, чем вто­рой, от­сю­да имеем:

 

Таким об­ра­зом, ско­рость пер­во­го теп­ло­хо­да равна 20 км/ч.

Ответ: 20.

Ответ: 20

8. B 14. До­ро­га между пунк­та­ми А и В со­сто­ит из подъёма и спус­ка, а её длина равна 8 км. Пе­ше­ход прошёл путь из А в В за 2 часа 45 минут. Время его дви­же­ния на спус­ке со­ста­ви­ло 1 час 15 минут. С какой ско­ро­стью пе­ше­ход шёл на спус­ке, если ско­рость его дви­же­ния на подъёме мень­ше ско­ро­сти дви­же­ния на спус­ке на 2 км/ч? Ответ вы­ра­зи­те в км/ч.

Ре­ше­ние.

За­ме­тим, что время подъ­ема со­ста­ви­ло 1 час 30 минут или 1,5 часа, а время спус­ка 1,25 часа. Пусть x км/ч — ско­рость дви­же­ния пе­ше­хо­да на спус­ке, тогда х − 2 км/ч — ско­рость дви­же­ния пе­ше­хо­да на подъ­еме, 1,25 х км — длина пути на спус­ке, 1,5(х − 2) км — длина пути на подъ­еме. Всего было прой­де­но 8 км, от­ку­да имеем:

 

 

Тем самым, ско­рость пе­ше­хо­да на спус­ке была равна 4 км/ч.

 

Ответ: 4.

Ответ: 4

9. B 14. Сме­ша­ли не­ко­то­рое ко­ли­че­ство 15–про­цент­но­го рас­тво­ра не­ко­то­ро­го ве­ще­ства с таким же ко­ли­че­ством 19–про­цент­но­го рас­тво­ра этого ве­ще­ства. Сколь­ко про­цен­тов со­став­ля­ет кон­цен­тра­ция по­лу­чив­ше­го­ся рас­тво­ра?

Ре­ше­ние.

Кон­цен­тра­ция рас­тво­ра равна . Пусть объем по­лу­чив­ше­го­ся рас­тво­ра лит­ров. Таким об­ра­зом, кон­цен­тра­ция по­лу­чен­но­го рас­тво­ра равна:

 

Ответ: 17.

Ответ: 17

10. B 14. До­ро­га между пунк­та­ми А и В со­сто­ит из подъёма и спус­ка, а её длина равна 8 км. Ту­рист прошёл путь из А в В за 5 часов. Время его дви­же­ния на спус­ке со­ста­ви­ло 1 час. С какой ско­ро­стью ту­рист шёл на спус­ке, если ско­рость его дви­же­ния на подъёме мень­ше ско­ро­сти дви­же­ния на спус­ке на 3 км/ч?

 

Вариант № 3715059

1. B 14. Заказ на 156 де­та­лей пер­вый ра­бо­чий вы­пол­ня­ет на 1 час быст­рее, чем вто­рой. Сколь­ко де­та­лей в час де­ла­ет пер­вый ра­бо­чий, если из­вест­но, что он за час де­ла­ет на 1 де­таль боль­ше?

Ре­ше­ние.

Обо­зна­чим – число де­та­лей, ко­то­рые из­го­тав­ли­ва­ет за час пер­вый ра­бо­чий, тогда вто­рой ра­бо­чий за час из­го­тав­ли­ва­ет де­таль, . На из­го­тов­ле­ние 156 де­та­лей пер­вый ра­бо­чий тра­тит на 1 час мень­ше, чем вто­рой ра­бо­чий, от­сю­да имеем:

 

Ответ: 13.

Ответ: 13

2. B 14. По морю па­рал­лель­ны­ми кур­са­ми в одном на­прав­ле­нии сле­ду­ют два су­хо­гру­за: пер­вый дли­ной 120 мет­ров, вто­рой – дли­ной 80 мет­ров. Сна­ча­ла вто­рой су­хо­груз от­ста­ет от пер­во­го, и в не­ко­то­рый мо­мент вре­ме­ни рас­сто­я­ние от кормы пер­во­го су­хо­гру­за до носа вто­ро­го со­став­ля­ет 400 мет­ров. Через 12 минут после этого уже пер­вый су­хо­груз от­ста­ет от вто­ро­го так, что рас­сто­я­ние от кормы вто­ро­го су­хо­гру­за до носа пер­во­го равно 600 мет­рам. На сколь­ко ки­ло­мет­ров в час ско­рость пер­во­го су­хо­гру­за мень­ше ско­ро­сти вто­ро­го?

Ре­ше­ние.

пока су­хо­гру­зы пе­рей­дут из пер­во­го по­ло­же­ния во вто­рое, вто­рой су­хо­груз пе­ре­ме­стил­ся от­но­си­тель­но пер­во­го на

 

м.

Пусть – раз­ность ско­ро­стей су­хо­гру­зов, тогда

 

м/мин км/ч

Ответ: 6.

Ответ: 6

3. B 14. В по­мощь са­до­во­му на­со­су, пе­ре­ка­чи­ва­ю­ще­му 5 лит­ров воды за 2 ми­ну­ты, под­клю­чи­ли вто­рой насос, пе­ре­ка­чи­ва­ю­щий тот же объем воды за 3 ми­ну­ты. Сколь­ко минут эти два на­со­са долж­ны ра­бо­тать сов­мест­но, чтобы пе­ре­ка­чать 25 лит­ров воды?

Ре­ше­ние.

Ско­рость сов­мест­ной ра­бо­ты на­со­сов

 

.

Для того, чтобы пе­ре­ка­чать 25 лит­ров воды, по­на­до­бит­ся

 

мин мин.

Ответ: 6.

Ответ: 6







Дата добавления: 2015-08-30; просмотров: 1147. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

ПУНКЦИЯ И КАТЕТЕРИЗАЦИЯ ПОДКЛЮЧИЧНОЙ ВЕНЫ   Пункцию и катетеризацию подключичной вены обычно производит хирург или анестезиолог, иногда — специально обученный терапевт...

Ситуация 26. ПРОВЕРЕНО МИНЗДРАВОМ   Станислав Свердлов закончил российско-американский факультет менеджмента Томского государственного университета...

Различия в философии античности, средневековья и Возрождения ♦Венцом античной философии было: Единое Благо, Мировой Ум, Мировая Душа, Космос...

Понятие метода в психологии. Классификация методов психологии и их характеристика Метод – это путь, способ познания, посредством которого познается предмет науки (С...

ЛЕКАРСТВЕННЫЕ ФОРМЫ ДЛЯ ИНЪЕКЦИЙ К лекарственным формам для инъекций относятся водные, спиртовые и масляные растворы, суспензии, эмульсии, ново­галеновые препараты, жидкие органопрепараты и жидкие экс­тракты, а также порошки и таблетки для имплантации...

Тема 5. Организационная структура управления гостиницей 1. Виды организационно – управленческих структур. 2. Организационно – управленческая структура современного ТГК...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия