Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Ре­ше­ние. 13 страница





Ре­ше­ние.

По­сколь­ку по­ка­за­те­ли мак­си­маль­ны, они равны 5. Под­ста­вим зна­че­ния в фор­му­лу:

 

 

Ответ:35.

Ответ: 35

4. B 12. На­хо­дя­щий­ся в воде во­до­лаз­ный ко­ло­кол, со­дер­жа­щий моля воз­ду­ха при дав­ле­нии ат­мо­сфе­ры, мед­лен­но опус­ка­ют на дно водоeма. При этом про­ис­хо­дит изо­тер­ми­че­ское сжа­тие воз­ду­ха. Ра­бо­та, со­вер­ша­е­мая водой при сжа­тии воз­ду­ха, опре­де­ля­ет­ся вы­ра­же­ни­ем (Дж), где – по­сто­ян­ная, – тем­пе­ра­ту­ра воз­ду­ха, (атм) – на­чаль­ное дав­ле­ние, а (атм) – ко­неч­ное дав­ле­ние воз­ду­ха в ко­ло­ко­ле. До ка­ко­го наи­боль­ше­го дав­ле­ния можно сжать воз­дух в ко­ло­ко­ле, если при сжа­тии воз­ду­ха со­вер­ша­ет­ся ра­бо­та не более чем 6900 Дж? Ответ при­ве­ди­те в ат­мо­сфе­рах.

Ре­ше­ние.

За­да­ча сво­дит­ся к ре­ше­нию не­ра­вен­ства при за­дан­ных зна­че­ни­ях по­сто­ян­ной , тем­пе­ра­ту­ры воз­ду­ха К, на­чаль­но­го дав­ле­ния атм и ко­ли­че­ства воз­ду­ха моль:

 

атм.

Ответ: 6.

Ответ: 6

5. B 12. Урав­не­ние про­цес­са, в ко­то­ром участ­во­вал газ, за­пи­сы­ва­ет­ся в виде , где (Па) – дав­ле­ние в газе, – объeм газа в ку­би­че­ских мет­рах, a – по­ло­жи­тель­ная кон­стан­та. При каком наи­мень­шем зна­че­нии кон­стан­ты a умень­ше­ние вдвое раз объeма газа, участ­ву­ю­ще­го в этом про­цес­се, при­во­дит к уве­ли­че­нию дав­ле­ния не менее, чем в 4 раза?

Ре­ше­ние.

Пусть и – на­чаль­ные, а и – ко­неч­ные зна­че­ния объ­е­ма и дав­ле­ния газа, со­от­вет­ствен­но. За­да­ча сво­дит­ся к ре­ше­нию не­ра­вен­ства , при­чем :

 

.

Ответ: 2.

Ответ: 2

6. B 12. Ав­то­мо­биль, дви­жу­щий­ся в на­чаль­ный мо­мент вре­ме­ни со ско­ро­стью м/с, начал тор­мо­же­ние с по­сто­ян­ным уско­ре­ни­ем м/с2. За – се­кунд после на­ча­ла тор­мо­же­ния он прошёл путь (м). Опре­де­ли­те время, про­шед­шее от мо­мен­та на­ча­ла тор­мо­же­ния, если из­вест­но, что за это время ав­то­мо­биль про­ехал 30 мет­ров. Ответ вы­ра­зи­те в се­кун­дах.

Ре­ше­ние.

Най­дем, за какое время , про­шед­шее от мо­мен­та на­ча­ла тор­мо­же­ния, ав­то­мо­биль про­едет 30 мет­ров:

 

.

Зна­чит, через 2 се­кун­ды после на­ча­ла тор­мо­же­ния ав­то­мо­биль про­едет 30 мет­ров.

 

Ответ: 2.

Ответ: 2

7. B 12. Для по­лу­че­ния на экра­не уве­ли­чен­но­го изоб­ра­же­ния лам­поч­ки в ла­бо­ра­то­рии ис­поль­зу­ет­ся со­би­ра­ю­щая линза с глав­ным фо­кус­ным рас­сто­я­ни­ем см. Рас­сто­я­ние от линзы до лам­поч­ки может из­ме­нять­ся в пре­де­лах от 30 до 50 см, а рас­сто­я­ние от линзы до экра­на – в пре­де­лах от 150 до 180 см. Изоб­ра­же­ние на экра­не будет чет­ким, если вы­пол­не­но со­от­но­ше­ние . Ука­жи­те, на каком наи­мень­шем рас­сто­я­нии от линзы можно по­ме­стить лам­поч­ку, чтобы еe изоб­ра­же­ние на экра­не было чeтким. Ответ вы­ра­зи­те в сан­ти­мет­рах.

Ре­ше­ние.

По­сколь­ку имеем:

 

.

Наи­мень­ше­му воз­мож­но­му зна­че­нию со­от­вет­ству­ет наи­боль­шее зна­че­ние левой части по­лу­чен­но­го ра­вен­ства, и, со­от­вет­ствен­но, наи­боль­шее воз­мож­ное зна­че­ние пра­вой части ра­вен­ства. Раз­ность в пра­вой части ра­вен­ства до­сти­га­ет наи­боль­ше­го зна­че­ния при наи­мень­шем зна­че­нии вы­чи­та­е­мо­го , ко­то­рое до­сти­га­ет­ся при наи­боль­шем воз­мож­ном зна­че­нии зна­ме­на­те­ля . По­это­му , от­ку­да

 

см

По усло­вию лам­поч­ка долж­на на­хо­дить­ся на рас­сто­я­нии от 30 до 50 см от линзы. Най­ден­ное зна­че­ние см удо­вле­тво­ря­ет усло­вию.

 

Ответ: 36.

Ответ: 36

8. B 12. Сила тока в цепи (в ам­пе­рах) опре­де­ля­ет­ся на­пря­же­ни­ем в цепи и со­про­тив­ле­ни­ем элек­тро­при­бо­ра по за­ко­ну Ома: , где – на­пря­же­ние в воль­тах, – со­про­тив­ле­ние элек­тро­при­бо­ра в омах. В элек­тро­сеть включeн предо­хра­ни­тель, ко­то­рый пла­вит­ся, если сила тока пре­вы­ша­ет 4 А. Опре­де­ли­те, какое ми­ни­маль­ное со­про­тив­ле­ние долж­но быть у элек­тро­при­бо­ра, под­клю­ча­е­мо­го к ро­зет­ке в 220 вольт, чтобы сеть про­дол­жа­ла ра­бо­тать. Ответ вы­ра­зи­те в Омах.

Ре­ше­ние.

За­да­ча сво­дит­ся к ре­ше­нию не­ра­вен­ства А при из­вест­ном зна­че­нии на­пря­же­ния В:

 

Ом.

Ответ: 55.

Ответ: 55

9. B 12. Уста­нов­ка для де­мон­стра­ции адиа­ба­ти­че­ско­го сжа­тия пред­став­ля­ет собой сосуд с порш­нем, резко сжи­ма­ю­щим газ. При этом объeм и дав­ле­ние свя­за­ны со­от­но­ше­ни­ем , где (атм.) – дав­ле­ние в газе, – объeм газа в лит­рах. Из­на­чаль­но объeм газа равен 1,6 л, а его дав­ле­ние равно одной ат­мо­сфе­ре. В со­от­вет­ствии с тех­ни­че­ски­ми ха­рак­те­ри­сти­ка­ми пор­шень на­со­са вы­дер­жи­ва­ет дав­ле­ние не более 128 ат­мо­сфер. Опре­де­ли­те, до ка­ко­го ми­ни­маль­но­го объeма можно сжать газ. Ответ вы­ра­зи­те в лит­рах.

Ре­ше­ние.

пусть и - на­чаль­ные, а и - ко­неч­ные зна­че­ния объ­е­ма и дав­ле­ния газа, со­от­вет­ствен­но. Тогда за­да­ча сво­дит­ся к ре­ше­нию не­ра­вен­ства

 

, где атм., л., атм.

Тогда

.

Ответ: 0,05.

Ответ: 0,05

10. B 12. Ам­пли­ту­да ко­ле­ба­ний ма­ят­ни­ка за­ви­сит от ча­сто­ты вы­нуж­да­ю­щей силы, опре­де­ля­е­мой по фор­му­ле , где – ча­сто­та вы­нуж­да­ю­щей силы (в ), – по­сто­ян­ный па­ра­метр, – ре­зо­нанс­ная ча­сто­та. Най­ди­те мак­си­маль­ную ча­сто­ту , мень­шую ре­зо­нанс­ной, для ко­то­рой ам­пли­ту­да ко­ле­ба­ний пре­вос­хо­дит ве­ли­чи­ну не более чем на . Ответ вы­ра­зи­те в .

 

 

Вариант № 3712875

1. B 13. Ра­ди­у­сы трех шаров равны 6, 8 и 10. Най­ди­те ра­ди­ус шара, объем ко­то­ро­го равен сумме их объ­е­мов.

Ре­ше­ние.

Объем та­ко­го шара

 

,

от­ку­да по­лу­чим, что .

Ответ: 12.

Ответ: 12

2. B 13. Най­ди­те объем части ци­лин­дра, изоб­ра­жен­ной на ри­сун­ке. В от­ве­те ука­жи­те .

Ре­ше­ние.

Объем дан­ной части ци­лин­дра равен

 

.

Ответ: 3,75.

Ответ: 3,75

3. B 13. Ра­ди­ус ос­но­ва­ния ко­ну­са равен 3, вы­со­та равна 4. Най­ди­те пло­щадь пол­ной по­верх­но­сти ко­ну­са, де­лен­ную на .

Ре­ше­ние.

Най­дем об­ра­зу­ю­щую по тео­ре­ме Пи­фа­го­ра: . Пло­щадь пол­ной по­верх­но­сти ко­ну­са

 

.

Ответ: 24.

Ответ: 24

4. B 13. Объем шара равен 288 . Най­ди­те пло­щадь его по­верх­но­сти, де­лен­ную на .

Ре­ше­ние.

Объем шара ра­ди­у­са вы­чис­ля­ет­ся по фор­му­ле , от­ку­да

 

.

Пло­щадь его по­верх­но­сти:

.

Ответ: 144.

Ответ: 144

5. B 13. Объем пря­мо­уголь­но­го па­рал­ле­ле­пи­пе­да равен 60. Пло­щадь одной его грани равна 12. Най­ди­те ребро па­рал­ле­ле­пи­пе­да, пер­пен­ди­ку­ляр­ное этой грани.

Ре­ше­ние.

Объем пря­мо­уголь­но­го па­рал­ле­ле­пи­пе­да равен , где — пло­щадь грани, а — вы­со­та пер­пен­ди­ку­ляр­но­го к ней ребра. Тогда

 

Ответ: 5.

Ответ: 5

6. B 13. Ребра пря­мо­уголь­но­го па­рал­ле­ле­пи­пе­да, вы­хо­дя­щие из одной вер­ши­ны, равны 1, 2, 3. Най­ди­те его пло­щадь по­верх­но­сти.

Ре­ше­ние.

Пло­щадь по­верх­но­сти пря­мо­уголь­но­го па­рал­ле­ле­пи­пе­да равна удво­ен­ной сумме по­пар­ных про­из­ве­де­ний его из­ме­ре­ний

 

.

Ответ: 22.

Ответ: 22

7. B 13. Ос­но­ва­ни­ем пря­мой тре­уголь­ной приз­мы слу­жит пря­мо­уголь­ный тре­уголь­ник с ка­те­та­ми 3 и 5. Объем приз­мы равен 30. Най­ди­те ее бо­ко­вое ребро.

Ре­ше­ние.

Объем пря­мой приз­мы равен где – пло­щадь ос­но­ва­ния, а – бо­ко­вое ребро. Тогда длина ее бо­ко­во­го ребра равна

 

.

Ответ: 4.

Ответ: 4

8. B 13. Конус опи­сан около пра­виль­ной че­ты­рех­уголь­ной пи­ра­ми­ды со сто­ро­ной ос­но­ва­ния 4 и вы­со­той 6. Най­ди­те его объем, де­лен­ный на .

Ре­ше­ние.

Ра­ди­ус ос­но­ва­ния ко­ну­са равен по­ло­ви­не диа­го­на­ли квад­ра­та : . Тогда объем ко­ну­са, де­лен­ный на :

 

Ответ: 16.

Ответ: 16

9. B 13. Около куба с реб­ром опи­сан шар. Най­ди­те объем этого шара, де­лен­ный на .

Ре­ше­ние.

Пусть длина ребра куба равна а, а его диа­го­наль равна d. Ра­ди­ус опи­сан­но­го шара R равен по­ло­ви­не диа­го­на­ли куба:

 

.

По­это­му объем шара равен

Тогда

Ответ: 4,5.

Ответ: 4,5

B 13

.

 

Най­ди­те пло­щадь бо­ко­вой по­верх­но­сти пра­виль­ной тре­уголь­ной приз­мы, опи­сан­ной около ци­лин­дра, ра­ди­ус ос­но­ва­ния ко­то­ро­го равен , а вы­со­та равна 2.

Вариант № 3712978

1. B 13. Ра­ди­у­сы двух шаров равны 6, 8. Най­ди­те ра­ди­ус шара, пло­щадь по­верх­но­сти ко­то­ро­го равна сумме пло­ща­дей их по­верх­но­стей.

Ре­ше­ние.

Из усло­вия най­дем, что ра­ди­ус та­ко­го шара

 

.

Ответ: 10.

Ответ: 10

2. B 13. В пра­виль­ной ше­сти­уголь­ной приз­ме все ребра равны 1. Най­ди­те угол . Ответ дайте в гра­ду­сах.

Ре­ше­ние.

Рас­смот­рим пря­мо­уголь­ный тре­уголь­ник :

 

Оста­лось найти диа­го­наль ос­но­ва­ния. В пра­виль­ном ше­сти­уголь­ни­ке углы между сто­ро­на­ми равны , тогда по тео­ре­ме ко­си­ну­сов для тре­уголь­ни­ка АВС имеем:

Так как — ост­рый, он равен

Ответ: 60.

Ответ: 60

3. B 13. Вы­со­та ко­ну­са равна 6, об­ра­зу­ю­щая равна 10. Най­ди­те его объем, де­лен­ный на .

Ре­ше­ние.

По тео­ре­ме Пи­фа­го­ра най­дем, что ра­ди­ус ос­но­ва­ния равен . Тогда объем ко­ну­са, де­лен­ный на :

 

Ответ: 128.

Ответ: 128

4. B 13. В пра­виль­ной четырёхуголь­ной пи­ра­ми­де с ос­но­ва­ни­ем бо­ко­вое ребро равно 5, сто­ро­на ос­но­ва­ния равна . Най­ди­те объём пи­ра­ми­ды.

Ре­ше­ние.

В ос­но­ва­нии пра­виль­ной че­ты­рех­уголь­ной пи­ра­ми­ды лежит квад­рат, вер­ши­на пи­ра­ми­ды про­еци­ру­ет­ся в его центр. Вве­дем обо­зна­че­ния, как по­ка­за­но на ри­сун­ке. Диа­го­на­ли квад­ра­та пер­пен­ди­ку­ляр­ны друг другу, тре­уголь­ник пря­мо­уголь­ный и рав­но­бед­рен­ный. В нем

 

 

Тогда из пря­мо­уголь­но­го тре­уголь­ни­ка на­хо­дим, что

От­ку­да для объ­е­ма пи­ра­ми­ды имеем:

 

 

Ответ: 24.

Ответ: 24

5. B 13. Сто­ро­ны ос­но­ва­ния пра­виль­ной че­ты­рех­уголь­ной пи­ра­ми­ды равны 10, бо­ко­вые ребра равны 13. Най­ди­те пло­щадь по­верх­но­сти этой пи­ра­ми­ды.

Ре­ше­ние.

Пло­щадь пи­ра­ми­ды равна

 

.

Пло­щадь бо­ко­вой сто­ро­ны пи­ра­ми­ды . Вы­со­ту тре­уголь­ни­ка най­дем по тео­ре­ме Пи­фа­го­ра: . Тогда пло­щадь по­верх­но­сти пи­ра­ми­ды

 

.

Ответ: 340.

Ответ: 340

6. B 13. Най­ди­те угол пря­мо­уголь­но­го па­рал­ле­ле­пи­пе­да, для ко­то­ро­го , , . Дайте ответ в гра­ду­сах.

Ре­ше­ние.

В пря­мо­уголь­ни­ке от­ре­зок яв­ля­ет­ся диа­го­на­лью, По тео­ре­ме Пи­фа­го­ра

 

Пря­мо­уголь­ный тре­уголь­ник рав­но­бед­рен­ный: , зна­чит, его ост­рые углы равны

Ответ: 45.

Ответ: 45

7. B 13. Сто­ро­на ос­но­ва­ния пра­виль­ной ше­сти­уголь­ной пи­ра­ми­ды равна 4, а угол между бо­ко­вой гра­нью и ос­но­ва­ни­ем равен 45 . Най­ди­те объем пи­ра­ми­ды.

Ре­ше­ние.

Вер­ши­на пра­виль­ной пи­ра­ми­ды про­еци­ру­ет­ся в центр ее ос­но­ва­ния. В пра­виль­ном ше­сти­уголь­ни­ке со сто­ро­ной рас­сто­я­ние от его цен­тра до сто­ро­ны равно ра­ди­у­су впи­сан­ной окруж­но­сти, ко­то­рый равен . Так как угол между бо­ко­вой гра­нью и ос­но­ва­ни­ем равен 45°, вы­со­та пи­ра­ми­ды также равна . Тогда имеем:

 

.

Ответ: 48.

Ответ: 48

8. B 13. Най­ди­те объем части ци­лин­дра, изоб­ра­жен­ной на ри­сун­ке. В от­ве­те ука­жи­те .

Ре­ше­ние.

Объем дан­ной фи­гу­ры равен раз­но­сти объ­е­мов ци­лин­дра с ра­ди­у­сом ос­но­ва­ния 5 и вы­со­той 5 и ци­лин­дра с той же вы­со­той и ра­ди­у­сом ос­но­ва­ния 2:

 

.

Ответ: 105.

Ответ: 105

9. B 13. В пра­виль­ной че­ты­рех­уголь­ной пи­ра­ми­де вы­со­та равна 6, бо­ко­вое ребро равно 10. Най­ди­те ее объем.

Ре­ше­ние.

По тео­ре­ме Пи­фа­го­ра най­дем, что по­ло­ви­на диа­го­на­ли ос­но­ва­ния равна 8. Тогда диа­го­наль ос­но­ва­ния равна 16, а сто­ро­на – и пло­щадь

 

Тогда объем пи­ра­ми­ды

Ответ: 256.

Ответ: 256

10. B 13. Най­ди­те вы­со­ту пра­виль­ной тре­уголь­ной пи­ра­ми­ды, сто­ро­ны ос­но­ва­ния ко­то­рой равны 2, а объем равен .







Дата добавления: 2015-08-30; просмотров: 951. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Почему важны муниципальные выборы? Туристическая фирма оставляет за собой право, в случае причин непреодолимого характера, вносить некоторые изменения в программу тура без уменьшения общего объема и качества услуг, в том числе предоставлять замену отеля на равнозначный...

Тема 2: Анатомо-топографическое строение полостей зубов верхней и нижней челюстей. Полость зуба — это сложная система разветвлений, имеющая разнообразную конфигурацию...

Виды и жанры театрализованных представлений   Проживание бронируется и оплачивается слушателями самостоятельно...

Классификация ИС по признаку структурированности задач Так как основное назначение ИС – автоматизировать информационные процессы для решения определенных задач, то одна из основных классификаций – это классификация ИС по степени структурированности задач...

Внешняя политика России 1894- 1917 гг. Внешнюю политику Николая II и первый период его царствования определяли, по меньшей мере три важных фактора...

Оценка качества Анализ документации. Имеющийся рецепт, паспорт письменного контроля и номер лекарственной формы соответствуют друг другу. Ингредиенты совместимы, расчеты сделаны верно, паспорт письменного контроля выписан верно. Правильность упаковки и оформления....

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия