Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Ре­ше­ние. 16 страница





 

.

Тогда объем

.

Ответ: 1.

Ответ: 1

3. B 13. Объем тре­уголь­ной пи­ра­ми­ды равен 15. Плос­кость про­хо­дит через сто­ро­ну ос­но­ва­ния этой пи­ра­ми­ды и пе­ре­се­ка­ет про­ти­во­по­лож­ное бо­ко­вое ребро в точке, де­ля­щей его в от­но­ше­нии 1: 2, счи­тая от вер­ши­ны пи­ра­ми­ды. Най­ди­те боль­ший из объ­е­мов пи­ра­мид, на ко­то­рые плос­кость раз­би­ва­ет ис­ход­ную пи­ра­ми­ду.

Ре­ше­ние.

При оди­на­ко­вой пло­ща­ди ос­но­ва­ния боль­шим объ­е­мом будет об­ла­дать та часть, вы­со­та ко­то­рой боль­ше, то есть ниж­няя. Объем дан­ной пи­ра­ми­ды от­но­сит­ся к объ­е­му ис­ход­ной как и по­это­му равен 10.

 

Ответ: 10.

Ответ: 10

4. B 13.

Най­ди­те объем пи­ра­ми­ды, изоб­ра­жен­ной на ри­сун­ке. Ее ос­но­ва­ни­ем яв­ля­ет­ся мно­го­уголь­ник, со­сед­ние сто­ро­ны ко­то­ро­го пер­пен­ди­ку­ляр­ны, а одно из бо­ко­вых ребер пер­пен­ди­ку­ляр­но плос­ко­сти ос­но­ва­ния и равно 3.

Ре­ше­ние.

Пло­щадь ле­жа­ще­го в ос­но­ва­нии пи­ра­ми­ды мно­го­уголь­ни­ка яв­ля­ет­ся раз­но­стью пло­ща­дей квад­ра­тов со сто­ро­на­ми 6 и 3 (см. рис.):

 

 

По­сколь­ку вы­со­та пи­ра­ми­ды равна 3, имеем:

 

 

 

Ответ: 27.

Ответ: 27

B 13.

Пло­щадь осе­во­го се­че­ния ци­лин­дра равна 4. Най­ди­те пло­щадь бо­ко­вой по­верх­но­сти ци­лин­дра, де­лен­ную на .

Ре­ше­ние.

Пло­щадь осе­во­го се­че­ния ци­лин­дра равна , так как это пря­мо­уголь­ник. Пло­щадь бо­ко­вой по­верх­но­сти

 

.

Ответ: 4.

Ответ: 4

6. B 13. Объем пра­виль­ной ше­сти­уголь­ной пи­ра­ми­ды 6. Сто­ро­на ос­но­ва­ния равна 1. Най­ди­те бо­ко­вое ребро.

Ре­ше­ние.

Пло­щадь ос­но­ва­ния равна

 

.

Из фор­му­лы для объ­е­ма пи­ра­ми­ды най­дем вы­со­ту:

 

.

В пра­виль­ном ше­сти­уголь­ни­ке сто­ро­на равна ра­ди­у­су опи­сан­ной окруж­но­сти, по­это­му най­дем бо­ко­вое ребро пи­ра­ми­ды по тео­ре­ме Пи­фа­го­ра:

 

.

Ответ: 7.

Ответ: 7

7. B 13. Вы­со­та ко­ну­са равна 6, об­ра­зу­ю­щая равна 10. Най­ди­те пло­щадь его пол­ной по­верх­но­сти, де­лен­ную на .

Ре­ше­ние.

Пло­щадь по­верх­но­сти скла­ды­ва­ет­ся из пло­ща­ди ос­но­ва­ния и пло­ща­ди бо­ко­вой по­верх­но­сти:

 

.

Ра­ди­ус ос­но­ва­ния най­дем по тео­ре­ме Пи­фа­го­ра для тре­уголь­ни­ка, об­ра­зо­ван­но­го вы­со­той, об­ра­зу­ю­щей и ра­ди­у­сом: . Тогда пло­щадь по­верх­но­сти

Ответ: 144.

Ответ: 144

8. B 13. В куб с реб­ром 3 впи­сан шар. Най­ди­те объем этого шара, де­лен­ный на .

Ре­ше­ние.

Ра­ди­ус впи­сан­но­го в куб шара равен по­ло­ви­не длины ребра: . Тогда объем шара

 

.

Ответ: 4,5.

Ответ: 4,5

9. B 13. Сто­ро­ны ос­но­ва­ния пра­виль­ной че­ты­рех­уголь­ной пи­ра­ми­ды равны 10, бо­ко­вые ребра равны 13. Най­ди­те пло­щадь по­верх­но­сти этой пи­ра­ми­ды.

Ре­ше­ние.

Пло­щадь пи­ра­ми­ды равна

 

.

Пло­щадь бо­ко­вой сто­ро­ны пи­ра­ми­ды . Вы­со­ту тре­уголь­ни­ка най­дем по тео­ре­ме Пи­фа­го­ра: . Тогда пло­щадь по­верх­но­сти пи­ра­ми­ды

 

.

Ответ: 340.

Ответ: 340

10. B 13. Два ребра пря­мо­уголь­но­го па­рал­ле­ле­пи­пе­да, вы­хо­дя­щие из одной вер­ши­ны, равны 2, 4. Диа­го­наль па­рал­ле­ле­пи­пе­да равна 6. Най­ди­те пло­щадь по­верх­но­сти па­рал­ле­ле­пи­пе­да.

Вариант № 3713843

1. B 13. Объем шара равен 288 . Най­ди­те пло­щадь его по­верх­но­сти, де­лен­ную на .

Ре­ше­ние.

Объем шара ра­ди­у­са вы­чис­ля­ет­ся по фор­му­ле , от­ку­да

 

.

Пло­щадь его по­верх­но­сти:

.

Ответ: 144.

Ответ: 144

2. B 13. Най­ди­те объем части ко­ну­са, изоб­ра­жен­ной на ри­сун­ке. В от­ве­те ука­жи­те .

Ре­ше­ние.

Объем дан­ной части ко­ну­са равен

 

.

Ответ: 607,5.

Ответ: 607,5

3. B 13. В пра­виль­ной ше­сти­уголь­ной приз­ме все ребра равны 1. Най­ди­те рас­сто­я­ние между точ­ка­ми и .

Ре­ше­ние.

рас­смот­рим пря­мо­уголь­ный тре­уголь­ник По тео­ре­ме Пи­фа­го­ра

 

Угол между сто­ро­на­ми пра­виль­но­го ше­сти­уголь­ни­ка равен По тео­ре­ме ко­си­ну­сов

Зна­чит,

Ответ: 2.

Ответ: 2

4. B 13. Най­ди­те объем части ци­лин­дра, изоб­ра­жен­ной на ри­сун­ке. В от­ве­те ука­жи­те .

Ре­ше­ние.

Объем дан­ной фи­гу­ры равен раз­но­сти объ­е­мов ци­лин­дра с ра­ди­у­сом ос­но­ва­ния 5 и вы­со­той 5 и ци­лин­дра с той же вы­со­той и ра­ди­у­сом ос­но­ва­ния 2:

 

.

Ответ: 105.

Ответ: 105

5. B 13. Два ребра пря­мо­уголь­но­го па­рал­ле­ле­пи­пе­да, вы­хо­дя­щие из одной вер­ши­ны, равны 1, 2. Объем па­рал­ле­ле­пи­пе­да равен 6. Най­ди­те пло­щадь его по­верх­но­сти.

Ре­ше­ние.

Най­дем тре­тье ребро из вы­ра­же­ния для объ­е­ма:

 

.

Пло­щадь по­верх­но­сти па­рал­ле­ле­пи­пе­да

 

.

Ответ: 22.

Ответ: 22

6. B 13. Пря­мо­уголь­ный па­рал­ле­ле­пи­пед опи­сан около еди­нич­ной сферы. Най­ди­те его пло­щадь по­верх­но­сти.

Ре­ше­ние.

Вы­со­та и сто­ро­на та­ко­го па­рал­ле­ле­пи­пе­да равны диа­мет­ру сферы, то есть это куб со сто­ро­ной 2. Пло­щадь по­верх­но­сти куба со сто­ро­ной :

 

Ответ: 24.

Ответ: 24

7. B 13. Объем тре­уголь­ной пи­ра­ми­ды равен 15. Плос­кость про­хо­дит через сто­ро­ну ос­но­ва­ния этой пи­ра­ми­ды и пе­ре­се­ка­ет про­ти­во­по­лож­ное бо­ко­вое ребро в точке, де­ля­щей его в от­но­ше­нии 1: 2, счи­тая от вер­ши­ны пи­ра­ми­ды. Най­ди­те боль­ший из объ­е­мов пи­ра­мид, на ко­то­рые плос­кость раз­би­ва­ет ис­ход­ную пи­ра­ми­ду.

Ре­ше­ние.

При оди­на­ко­вой пло­ща­ди ос­но­ва­ния боль­шим объ­е­мом будет об­ла­дать та часть, вы­со­та ко­то­рой боль­ше, то есть ниж­няя. Объем дан­ной пи­ра­ми­ды от­но­сит­ся к объ­е­му ис­ход­ной как и по­это­му равен 10.

 

Ответ: 10.

Ответ: 10

8. B 13. Два ребра пря­мо­уголь­но­го па­рал­ле­ле­пи­пе­да, вы­хо­дя­щие из одной вер­ши­ны, равны 1, 2. Пло­щадь по­верх­но­сти па­рал­ле­ле­пи­пе­да равна 16. Най­ди­те его диа­го­наль.

Ре­ше­ние.

Обо­зна­чим из­вест­ные ребра за и , а не­из­вест­ное за . Пло­щадь по­верх­но­сти па­рал­ле­ле­пи­пе­да вы­ра­жа­ет­ся как . Вы­ра­зим :

 

,

от­ку­да не­из­вест­ное ребро

,

Диа­го­наль па­рал­ле­ле­пи­пе­да на­хо­дит­ся как

 

.

Ответ: 3.

Ответ: 3

9. B 13. Най­ди­те пло­щадь бо­ко­вой по­верх­но­сти пра­виль­ной ше­сти­уголь­ной приз­мы, опи­сан­ной около ци­лин­дра, ра­ди­ус ос­но­ва­ния ко­то­ро­го равен , а вы­со­та равна 2.

Ре­ше­ние.

Сто­ро­на пра­виль­но­го ше­сти­уголь­ни­ка вы­ра­жа­ет­ся через ра­ди­ус впи­сан­ной в него окруж­но­сти как . Тогда пло­щадь бо­ко­вой по­верх­но­сти приз­мы вы­ра­жа­ет­ся фор­му­лой

 

.

Ответ: 24.

Ответ: 24

10. B 13. Два ребра пря­мо­уголь­но­го па­рал­ле­ле­пи­пе­да, вы­хо­дя­щие из одной вер­ши­ны, равны 2, 4. Диа­го­наль па­рал­ле­ле­пи­пе­да равна 6. Най­ди­те пло­щадь по­верх­но­сти па­рал­ле­ле­пи­пе­да.

Ре­ше­ние.

Обо­зна­чим из­вест­ные ребра за и , а не­из­вест­ное за . Пло­щадь по­верх­но­сти па­рал­ле­ле­пи­пе­да вы­ра­жа­ет­ся как

 

.

Диа­го­наль па­рал­ле­ле­пи­пе­да на­хо­дит­ся как

.

Вы­ра­зим :

.

Тогда пло­щадь по­верх­но­сти

Ответ: 64.

Ответ: 64

 

Вариант № 3713899

1. B 13. Ра­ди­у­сы двух шаров равны 6, 8. Най­ди­те ра­ди­ус шара, пло­щадь по­верх­но­сти ко­то­ро­го равна сумме пло­ща­дей их по­верх­но­стей.

Ре­ше­ние.

Из усло­вия най­дем, что ра­ди­ус та­ко­го шара

 

.

Ответ: 10.

Ответ: 10

2. B 13. Около куба с реб­ром опи­сан шар. Най­ди­те объем этого шара, де­лен­ный на .

Ре­ше­ние.

Пусть длина ребра куба равна а, а его диа­го­наль равна d. Ра­ди­ус опи­сан­но­го шара R равен по­ло­ви­не диа­го­на­ли куба:

 

.

По­это­му объем шара равен

Тогда

Ответ: 4,5.

Ответ: 4,5

3. B 13. В пря­мо­уголь­ном па­рал­ле­ле­пи­пе­де из­вест­ны длины рёбер: , , . Най­ди­те пло­щадь се­че­ния, про­хо­дя­ще­го через вер­ши­ны , и .

Ре­ше­ние.

Се­че­ние пе­ре­се­ка­ет па­рал­лель­ные грани по па­рал­лель­ным от­рез­кам. По­это­му се­че­ние − па­рал­ле­ло­грамм. Кроме того, ребро пер­пен­ди­ку­ляр­но гра­ням и . По­это­му углы и − пря­мые.По­это­му се­че­ние — пря­мо­уголь­ник.

 

Из пря­мо­уголь­но­го тре­уголь­ни­ка най­дем

 

 

Тогда пло­щадь пря­мо­уголь­ни­ка равна:

 

 

Ответ:572.

Ответ: 572

4. B 13. Объем пря­мо­уголь­но­го па­рал­ле­ле­пи­пе­да равен 24. Одно из его ребер равно 3. Най­ди­те пло­щадь грани па­рал­ле­ле­пи­пе­да, пер­пен­ди­ку­ляр­ной этому ребру.

Ре­ше­ние.

Объем пря­мо­уголь­но­го па­рал­ле­ле­пи­пе­да равен , где – пло­щадь грани, а – вы­со­та пер­пен­ди­ку­ляр­но­го к ней ребра. Тогда пло­щадь грани

 

.

Ответ: 8.

Ответ: 8

5. B 13. Ребра пря­мо­уголь­но­го па­рал­ле­ле­пи­пе­да, вы­хо­дя­щие из одной вер­ши­ны, равны 1, 2, 3. Най­ди­те его пло­щадь по­верх­но­сти.

Ре­ше­ние.

Пло­щадь по­верх­но­сти пря­мо­уголь­но­го па­рал­ле­ле­пи­пе­да равна удво­ен­ной сумме по­пар­ных про­из­ве­де­ний его из­ме­ре­ний

 

.

Ответ: 22.

Ответ: 22

6. B 13. Най­ди­те объем части ци­лин­дра, изоб­ра­жен­ной на ри­сун­ке. В от­ве­те ука­жи­те .

Ре­ше­ние.

Объем дан­ной фи­гу­ры равен раз­но­сти объ­е­мов ци­лин­дра с ра­ди­у­сом ос­но­ва­ния 5 и вы­со­той 5 и ци­лин­дра с той же вы­со­той и ра­ди­у­сом ос­но­ва­ния 2:

 

.

Ответ: 105.

Ответ: 105

7. B 13. Пло­щадь осе­во­го се­че­ния ци­лин­дра равна 4. Най­ди­те пло­щадь бо­ко­вой по­верх­но­сти ци­лин­дра, де­лен­ную на .

Ре­ше­ние.

Пло­щадь осе­во­го се­че­ния ци­лин­дра равна , так как это пря­мо­уголь­ник. Пло­щадь бо­ко­вой по­верх­но­сти

 

.

Ответ: 4.

Ответ: 4

8. B 13. На й­ди­те объем части ко­ну­са, изоб­ра­жен­ной на ри­сун­ке. В от­ве­те ука­жи­те .

Ре­ше­ние.

Объем дан­ной части ко­ну­са равен

 

.

Ответ: 216.

Ответ: 216

9. B 13. Объем шара равен 288 . Най­ди­те пло­щадь его по­верх­но­сти, де­лен­ную на .

Ре­ше­ние.

Объем шара ра­ди­у­са вы­чис­ля­ет­ся по фор­му­ле , от­ку­да

 

.

Пло­щадь его по­верх­но­сти:

.

Ответ: 144.

Ответ: 144

10. B 13. В ос­но­ва­нии пря­мой приз­мы лежит квад­рат со сто­ро­ной 2. Бо­ко­вые ребра равны . Най­ди­те объем ци­лин­дра, опи­сан­но­го около этой приз­мы.

Ре­ше­ние.

Диа­го­наль квад­ра­та в ос­но­ва­нии приз­мы яв­ля­ет­ся диа­мет­ром опи­сан­но­го во­круг приз­мы ци­лин­дра. Тогда его объем:

 

.

Ответ: 4.

Ответ: 4

 

Вариант № 3714009

1. B 13. Най­ди­те объем части ко­ну­са, изоб­ра­жен­ной на ри­сун­ке. В от­ве­те ука­жи­те .

Ре­ше­ние.

Объем дан­ной части ко­ну­са равен

 

.

Ответ: 607,5.

Ответ: 607,5

2. B 13. В пра­виль­ной че­ты­рех­уголь­ной пи­ра­ми­де вы­со­та равна 6, бо­ко­вое ребро равно 10. Най­ди­те ее объем.

Ре­ше­ние.

По тео­ре­ме Пи­фа­го­ра най­дем, что по­ло­ви­на диа­го­на­ли ос­но­ва­ния равна 8. Тогда диа­го­наль ос­но­ва­ния равна 16, а сто­ро­на – и пло­щадь

 

Тогда объем пи­ра­ми­ды

Ответ: 256.

Ответ: 256

3. B 13. Два ребра пря­мо­уголь­но­го па­рал­ле­ле­пи­пе­да, вы­хо­дя­щие из одной вер­ши­ны, равны 2, 4. Диа­го­наль па­рал­ле­ле­пи­пе­да равна 6. Най­ди­те объем па­рал­ле­ле­пи­пе­да.

Ре­ше­ние.

Длина диа­го­на­ли па­рал­ле­ле­пи­пе­да равна

 

.

Длина тре­тье­го ребра тогда . По­лу­чим, что объем па­рал­ле­ле­пи­пе­да

.

Ответ: 32.

Ответ: 32

4. B 13. Се­ре­ди­на ребра куба со сто­ро­ной 1,9 яв­ля­ет­ся цен­тром шара ра­ди­у­са 0,95. Най­ди­те пло­щадь части по­верх­но­сти шара, ле­жа­щей внут­ри куба. В от­ве­те за­пи­ши­те .

Ре­ше­ние.

Так как се­ре­ди­на ребер куба яв­ля­ет­ся цен­тром сферы, диа­метр ко­то­рой равен ребру куба, в кубе со­дер­жит­ся 1/4 сферы и, со­от­вет­ствен­но, 1/4 ее по­верх­но­сти. Имеем:

 

.

Ответ: 0,9025.

Ответ: 0,9025

5. B 13. Объем пра­виль­ной ше­сти­уголь­ной пи­ра­ми­ды 6. Сто­ро­на ос­но­ва­ния равна 1. Най­ди­те бо­ко­вое ребро.

Ре­ше­ние.

Пло­щадь ос­но­ва­ния равна

 

.

Из фор­му­лы для объ­е­ма пи­ра­ми­ды най­дем вы­со­ту:

 

.

В пра­виль­ном ше­сти­уголь­ни­ке сто­ро­на равна ра­ди­у­су опи­сан­ной окруж­но­сти, по­это­му най­дем бо­ко­вое ребро пи­ра­ми­ды по тео­ре­ме Пи­фа­го­ра:

 

.







Дата добавления: 2015-08-30; просмотров: 2035. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Растягивание костей и хрящей. Данные способы применимы в случае закрытых зон роста. Врачи-хирурги выяснили...

ФАКТОРЫ, ВЛИЯЮЩИЕ НА ИЗНОС ДЕТАЛЕЙ, И МЕТОДЫ СНИЖЕНИИ СКОРОСТИ ИЗНАШИВАНИЯ Кроме названных причин разрушений и износов, знание которых можно использовать в системе технического обслуживания и ремонта машин для повышения их долговечности, немаловажное значение имеют знания о причинах разрушения деталей в результате старения...

Различие эмпиризма и рационализма Родоначальником эмпиризма стал английский философ Ф. Бэкон. Основной тезис эмпиризма гласит: в разуме нет ничего такого...

ОЧАГОВЫЕ ТЕНИ В ЛЕГКОМ Очаговыми легочными инфильтратами проявляют себя различные по этиологии заболевания, в основе которых лежит бронхо-нодулярный процесс, который при рентгенологическом исследовании дает очагового характера тень, размерами не более 1 см в диаметре...

Примеры решения типовых задач. Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2   Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2. Найдите константу диссоциации кислоты и значение рК. Решение. Подставим данные задачи в уравнение закона разбавления К = a2См/(1 –a) =...

Экспертная оценка как метод психологического исследования Экспертная оценка – диагностический метод измерения, с помощью которого качественные особенности психических явлений получают свое числовое выражение в форме количественных оценок...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия