Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Метод плоских посредников





Задача: Построить линию пересечения двух поверхностей вращения: конуса (Φ1) и сферы (Φ2). Графическое оформление задачи приведено на рис. 7.

 

 
 

Рис. 7

 

Символическая запись условия задачи: Φ1, Φ2; Φ1 ∩ Φ2 = ;?

Анализ и решение задачи:

1) пересекаются две поверхности вращения второго порядка, следовательно, линия пересечения ; является кривой четвертого порядка.

2) так как вид пересечения – «врезка» (несквозное пересечение), то получается одна линия пересечения ;.

3) поверхности имеют общую плоскость симметрии α;1, параллельную фронтальной плоскости проекций, значит пересечение их фронтальных очерков дает пару характерных точек – верхнюю и - нижнюю.

4) в качестве посредников для последующих построений в этой задаче целесообразно принимать горизонтальные плоскости α;2, α;3 и т. д., поскольку линии пересечения ими каждой из поверхностей являются наипростейшими (окружностями).

5) границей зоны видимости искомой кривой ; для горизонтальной плоскости проекций является экватор сферы, поэтому плоскость – посредник α;2 проведенная через экватор сферы Φ2, дает на втором шаге алгоритма принадлежащие экватору точки 2 и , являющиеся границами зоны видимости для горизонтальной плоскости проекций. Эти же точки являются самыми левыми.

6) границами видимости для фронтальной плоскости проекций являются главные фронтальные меридианы и принадлежащие им точки 1 и .

Таким образом, построение линии пересечения поверхностей сводится к следующему.

Во-первых, проводим плоскость α;1, параллельную фронтальной плоскости проекций через оси i и ј поверхностей. На горизонтальной плоскости проекций – это след-проекция , параллельная оси х. На фронтальной проекции находим точки пересечения очерков . Сносим полученные точки на горизонтальный след-проекцию плоскости α;1 с учетом видимости (точка ' – видимая, – невидимая). Записываем первый шаг алгоритма в виде:

1)

где точка 1 – верхняя, точка - нижняя.

Отметим, что алгоритм записывается для пространства, а построение проекций точек и линии производится для каждой плоскости проекций с обязательным обозначением всех элементов построения.

Во-вторых, через экватор сферы Φ2 проводим плоскость-посредник α;2, параллельную горизонтальной плоскости проекций (см. ). Параллели m 2 и n 2 фронтальной проекции неразличимы, так как их проекции m 2" и n 2" частично накладываются друг на друга. Поэтому строим их горизонтальные проекции m 2' и n 2', как окружности соответствующих радиусов и точки их пересечения. Фронтальные проекции " этих точек находим на след-проекции плоскости α;2 по линиям проекционной связи. Записываем второй шаг алгоритма:

2)

точка 2 – левая ближняя, точка - левая дальняя. Обе точки – границы видимости.

В-третьих, произвольно проводим плоскость α;3, параллельную плоскости . Аналогично второму шагу, находим горизонтальные проекции линий пересечения этой плоскости с каждой поверхностью и горизонтальные проекции точек , а затем на следе-проекции – фронтальные проекции этих точек. Записываем третий шаг алгоритма:

3) - произвольные точки. Аналогично можно было бы получить точки под номерами 4, 5 и т. д., но для данной задачи в этом нет необходимости, так как характер и форма кривой определены достаточно полно.

В-четвертых, соединяем полученные точки между собой. Поскольку искомая кривая ; является замкнутой, ее построение можно начинать с любой точки и в любом направлении, например .

Заключительный этап алгоритма может быть записан в виде:

 

; = или = .







Дата добавления: 2015-09-19; просмотров: 1362. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

ИГРЫ НА ТАКТИЛЬНОЕ ВЗАИМОДЕЙСТВИЕ Методические рекомендации по проведению игр на тактильное взаимодействие...

Реформы П.А.Столыпина Сегодня уже никто не сомневается в том, что экономическая политика П...

Виды нарушений опорно-двигательного аппарата у детей В общеупотребительном значении нарушение опорно-двигательного аппарата (ОДА) идентифицируется с нарушениями двигательных функций и определенными органическими поражениями (дефектами)...

Сущность, виды и функции маркетинга персонала Перснал-маркетинг является новым понятием. В мировой практике маркетинга и управления персоналом он выделился в отдельное направление лишь в начале 90-х гг.XX века...

Разработка товарной и ценовой стратегии фирмы на российском рынке хлебопродуктов В начале 1994 г. английская фирма МОНО совместно с бельгийской ПЮРАТОС приняла решение о начале совместного проекта на российском рынке. Эти фирмы ведут деятельность в сопредельных сферах производства хлебопродуктов. МОНО – крупнейший в Великобритании...

ОПРЕДЕЛЕНИЕ ЦЕНТРА ТЯЖЕСТИ ПЛОСКОЙ ФИГУРЫ Сила, с которой тело притягивается к Земле, называется силой тяжести...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия