Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Производственная функция. Свойства производственной функции





Для организации любого производственного процесса необхо­димы факторы производства.

Будем считать, что выпуск продукции Q произведен при ис­пользовании только двух факторов производства — труда L и ка­питала К. В общем виде производственная функция (1) имеет вид:

 

Q = f(L, К)

где f — форма производственной функции.

Производственная функция описывает технологическую вза­имосвязь между объемом выпускаемой продукции и произведен­ными затратами — затратами факторов производства, а также зависимость между затратами. В функции находит отражение максимальный объем продукции, который достигается при каж­дой комбинации факторов, то есть в определении производствен­ной функции максимизация продукции решена технически. Если в качестве независимых переменных выступают величины зат­рат, то производственную функцию называют функцией выпус­ка, если же фиксирована величина выпуска, то производствен­ная функция является функцией затрат.

При любой комбинации факторов можно достичь нескольких объемов выпуска в зависимости от эффективности организации производства. Если технология становится более прогрессивной, то фирма может увеличивать объем производства при фиксиро­ванном наборе производственных факторов. Производственная функция предполагает, что фирма использует каждое сочетание факторов с максимальной эффективностью. Если используются п факторов производства, то производственная функция в общей форме имеет вид:

Q = f{F1 F2,..., Fn),

где F1, F2,..., Fn — использованные факторы производства.

Если фиксирована величина выпуска, то производственная функция является функцией затрат и тогда затраты любого фак­тора Fh можно выразить как функцию всех остальных затрат:

где ф — форма функции.

Для укрупненного анализа и прогнозирования используется производственная функция Кобба-Дугласа ( Впервые производственная функция была построена в 1928 году для обрабатывающей промышленности США за период 1899—1922 годы и носит имя её авторов Ч. Кобба и П. Дугласа.):

где Q — максимальный объем продукта при заданных факторах производства;

L, К — затраты труда, капитала;

k — коэффициент пропорциональности, или масштабности;

α, β — коэффициенты эластичности объема производства, со­ответственно, по труду и капиталу или коэффициенты прироста Q, приходящиеся на 1% прироста соответствующего фактора.

Названные коэффициенты в сумме измеряют совокупное про­центное изменение выпуска при данном процентном изменении затрат труда и капитала. Если а + Р = 1, то объём выпуска возрастает ровно на столько, на сколько увеличиваются затраты тру­да, капитала и материалов, имеет место постоянная отдача от масштаба, и функция Кобба-Дугласа в таком случае является однородной. Если (а + Р) > 1, то предприятием будет получена экономия от масштаба, свидетельствующая о том, что эффектив­ность факторов производства повышается в условиях техниче­ского прогресса. Если (а+Р) < 1, будет иметь место убывающая отдача от масштаба производства.







Дата добавления: 2015-09-19; просмотров: 386. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Различие эмпиризма и рационализма Родоначальником эмпиризма стал английский философ Ф. Бэкон. Основной тезис эмпиризма гласит: в разуме нет ничего такого...

Индекс гингивита (PMA) (Schour, Massler, 1948) Для оценки тяжести гингивита (а в последующем и ре­гистрации динамики процесса) используют папиллярно-маргинально-альвеолярный индекс (РМА)...

Методика исследования периферических лимфатических узлов. Исследование периферических лимфатических узлов производится с помощью осмотра и пальпации...

Условия, необходимые для появления жизни История жизни и история Земли неотделимы друг от друга, так как именно в процессах развития нашей планеты как космического тела закладывались определенные физические и химические условия, необходимые для появления и развития жизни...

Метод архитекторов Этот метод является наиболее часто используемым и может применяться в трех модификациях: способ с двумя точками схода, способ с одной точкой схода, способ вертикальной плоскости и опущенного плана...

Примеры задач для самостоятельного решения. 1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P   1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P...

Studopedia.info - Студопедия - 2014-2024 год . (0.012 сек.) русская версия | украинская версия