Метод умножения числителя и знаменателя на сопряженное выражение
Продолжаем рассматривать неопределенность вида Следующий тип пределов похож на предыдущий тип. Единственное, помимо многочленов, у нас добавятся корни. Пример 6 Найти предел Начинаем решать. Сначала пробуем подставить 3 в выражение под знаком предела Получена неопределенность вида Как Вы, наверное, заметили, у нас в числителе находится разность корней. А от корней в математике принято, по-возможности, избавляться. Зачем? А без них жизнь проще. Когда в числителе (знаменателе) находится разность корней (или корень минус какое-нибудь число), то для раскрытия неопределенности Вспоминаем нашу нетленную формулу разности квадратов: Умножаем числитель на сопряженное выражение: Обратите внимание, что под корнями при этой операции мы ничего не трогаем. Хорошо, То есть, мы умножили числитель и знаменатель на сопряженное выражение. Умножили. Теперь самое время применить вверху формулу Неопределенность Число, как уже отмечалось ранее, лучше вынести за значок предела. Теперь осталось разложить числитель и знаменатель на множители и сократить «виновников» неопределённости, ну а предел константы – равен самой константе: Готово. Как должно выглядеть решение данного примера в чистовом варианте? Умножим числитель и знаменатель на сопряженное выражение. Пример 7 Найти предел Сначала попробуйте решить его самостоятельно. Окончательное решение примера может выглядеть так: Разложим числитель на множители: Умножим числитель и знаменатель на сопряженное выражение
|