Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Прямая линия, принадлежащая плоскости





1. Прямая линия принадлежит плоскости, если две её точки принадлежат этой плоскости, BCÌΣ(m∩n)ÞBÌn, CÌm (рис. 5.14).

2. Прямая принадлежит плоскости, если имеет с плоскостью одну общую точку и параллельна какой-либо прямой, расположенной в этой плоскости. Пусть плоскость α задана m∩n, m∩k=C, kIIn (рис. 5.15).

 

а

б

  Рис. 5.14. Принадлежность прямой линии плоскости: а – наглядное изображение; б – комплексный чертёж
а

б

  Рис. 5.15. Принадлежность прямой линии плоскости: а – наглядное изображение; б – комплексный чертёж
     

 

3. Главные линии плоскости. Среди прямых линий, принадлежащих плоскости, особое значение имеют прямые, параллельные плоскостям проекций. Ими являются главные линии плоскости: горизонталь, фронталь, профиль.

Горизонталь h– прямая линия, лежащая в плоскости и параллельная горизонтальной плоскости проекций П1, hÌΣ(ΔABC), hIIП1 (рис. 5.16).

Алгоритм построения горизонтали.

1. Построить фронтальную проекцию горизонтали h2, h2II(OX).

2. Отметить точки 12 и 22. Получим [B2C2]∩[h2] = [12],[A2C2]∩[h2] = [22].

3. Построить горизонтальные проекции точек 1 и 2. [11]Ì[B1C1]; [21]Ì[A1C1].

4. Соединить точки 11 и 21. Получим h1 – горизонтальную проекцию горизонтали h.

Фронталь f – прямая линия, лежащая в плоскости и параллельная фронтальной плоскости проекций П2, fÌ α(ΔABC), fIIП2 (рис. 5.17).

Алгоритм построения фронтали.

1. Построить горизонтальную проекцию горизонтали, f1 II OX.

2. Отметить точки 11 и 21. Получим [B1C1]∩[f1] = [11],[A1C1]∩[f1] = [21].

3. Построить фронтальные проекции точек 1 и 2, [12]Ì(В2С2), 22Ì[А2С2]. Соединить точки 12 с 22, получим f2 – фронтальную проекцию фронтали f.

Профильная прямая р – прямая линия, которая находится в данной плоскости и параллельна профильной плоскости проекций П3, рÌ α(ABC), р II П3 (рис. 5.18). Проекции р1 и р2 профильной прямой р совпадают с одной вертикальной линией связи.

Алгоритм построения профиля.

1. Построить фронтальную проекцию профильной прямой p2, p2 II Oz.

2. Отметить точки 12 и 22 2В2]Ç [р2] = [12], [A2C2]∩[р1] = [22].

3. Построить профильные проекции точек 1 и 2, [13]Ì[А3В3],23Ì[А3С3]. Соединить точку 13 с 23. Получаем р3 – профильную проекцию профиля р.

Линия наибольшего наклона (ЛНН) – прямая линия, лежащая в плоскости, перпендикулярная линии уровня: горизонтали, фронтали либо профильной прямой, nÌα(hÇf), n^h (n1^h1). Линия наибольшего наклона к горизонтальной плоскости проекций называется линией наибольшего ската (ЛНС). Горизонтальная проекция линии наибольшего ската плоскости общего положения к плоскости П1 перпендикулярна горизонтальной проекции горизонтали этой плоскости. Фрон­ таль­ная проекция линии ската строится по ее принадлежности данной плоскости (рис. 5.19).

Алгоритм построения линии наибольшего ската плоскости.

1. Построить перпендикуляр к натуральной величине горизонтали h1, [h1] ^ [n1].

2. Отметить проекции точек 11 и 21.

3. Построить фронтальные проекции точек 1 и 2 (12 и 22).

4. Соединить проекции точек 12 и 22. Получим n2 – фронтальную проекцию ЛНС.

Прямая линия, пересекающая плоскость. Построение точки пересечения прямой линии с плоскость – одна из основных задач начертательной геометрии.Существует три типа таких задач, две из которых являются частными случаями. Рассмотрим этапы решения каждой из них.

Задача 5.1. Построение точки пересечения прямой общего положения с плоскостью общего положения.

Для решения задачи применяют метод вспомогательных секущих плоскостей-посредников, преимущественно проецирующих (табл. 5.1).

Таблица 5.1







Дата добавления: 2015-09-15; просмотров: 588. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Образование соседних чисел Фрагмент: Программная задача: показать образование числа 4 и числа 3 друг из друга...

Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...

Краткая психологическая характеристика возрастных периодов.Первый критический период развития ребенка — период новорожденности Психоаналитики говорят, что это первая травма, которую переживает ребенок, и она настолько сильна, что вся последую­щая жизнь проходит под знаком этой травмы...

Схема рефлекторной дуги условного слюноотделительного рефлекса При неоднократном сочетании действия предупреждающего сигнала и безусловного пищевого раздражителя формируются...

Уравнение волны. Уравнение плоской гармонической волны. Волновое уравнение. Уравнение сферической волны Уравнением упругой волны называют функцию , которая определяет смещение любой частицы среды с координатами относительно своего положения равновесия в произвольный момент времени t...

Медицинская документация родильного дома Учетные формы родильного дома № 111/у Индивидуальная карта беременной и родильницы № 113/у Обменная карта родильного дома...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия