Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Прямая линия, принадлежащая плоскости





1. Прямая линия принадлежит плоскости, если две её точки принадлежат этой плоскости, BCÌΣ(m∩n)ÞBÌn, CÌm (рис. 5.14).

2. Прямая принадлежит плоскости, если имеет с плоскостью одну общую точку и параллельна какой-либо прямой, расположенной в этой плоскости. Пусть плоскость α задана m∩n, m∩k=C, kIIn (рис. 5.15).

 

а

б

  Рис. 5.14. Принадлежность прямой линии плоскости: а – наглядное изображение; б – комплексный чертёж
а

б

  Рис. 5.15. Принадлежность прямой линии плоскости: а – наглядное изображение; б – комплексный чертёж
     

 

3. Главные линии плоскости. Среди прямых линий, принадлежащих плоскости, особое значение имеют прямые, параллельные плоскостям проекций. Ими являются главные линии плоскости: горизонталь, фронталь, профиль.

Горизонталь h– прямая линия, лежащая в плоскости и параллельная горизонтальной плоскости проекций П1, hÌΣ(ΔABC), hIIП1 (рис. 5.16).

Алгоритм построения горизонтали.

1. Построить фронтальную проекцию горизонтали h2, h2II(OX).

2. Отметить точки 12 и 22. Получим [B2C2]∩[h2] = [12],[A2C2]∩[h2] = [22].

3. Построить горизонтальные проекции точек 1 и 2. [11]Ì[B1C1]; [21]Ì[A1C1].

4. Соединить точки 11 и 21. Получим h1 – горизонтальную проекцию горизонтали h.

Фронталь f – прямая линия, лежащая в плоскости и параллельная фронтальной плоскости проекций П2, fÌ α(ΔABC), fIIП2 (рис. 5.17).

Алгоритм построения фронтали.

1. Построить горизонтальную проекцию горизонтали, f1 II OX.

2. Отметить точки 11 и 21. Получим [B1C1]∩[f1] = [11],[A1C1]∩[f1] = [21].

3. Построить фронтальные проекции точек 1 и 2, [12]Ì(В2С2), 22Ì[А2С2]. Соединить точки 12 с 22, получим f2 – фронтальную проекцию фронтали f.

Профильная прямая р – прямая линия, которая находится в данной плоскости и параллельна профильной плоскости проекций П3, рÌ α(ABC), р II П3 (рис. 5.18). Проекции р1 и р2 профильной прямой р совпадают с одной вертикальной линией связи.

Алгоритм построения профиля.

1. Построить фронтальную проекцию профильной прямой p2, p2 II Oz.

2. Отметить точки 12 и 22 2В2]Ç [р2] = [12], [A2C2]∩[р1] = [22].

3. Построить профильные проекции точек 1 и 2, [13]Ì[А3В3],23Ì[А3С3]. Соединить точку 13 с 23. Получаем р3 – профильную проекцию профиля р.

Линия наибольшего наклона (ЛНН) – прямая линия, лежащая в плоскости, перпендикулярная линии уровня: горизонтали, фронтали либо профильной прямой, nÌα(hÇf), n^h (n1^h1). Линия наибольшего наклона к горизонтальной плоскости проекций называется линией наибольшего ската (ЛНС). Горизонтальная проекция линии наибольшего ската плоскости общего положения к плоскости П1 перпендикулярна горизонтальной проекции горизонтали этой плоскости. Фрон­ таль­ная проекция линии ската строится по ее принадлежности данной плоскости (рис. 5.19).

Алгоритм построения линии наибольшего ската плоскости.

1. Построить перпендикуляр к натуральной величине горизонтали h1, [h1] ^ [n1].

2. Отметить проекции точек 11 и 21.

3. Построить фронтальные проекции точек 1 и 2 (12 и 22).

4. Соединить проекции точек 12 и 22. Получим n2 – фронтальную проекцию ЛНС.

Прямая линия, пересекающая плоскость. Построение точки пересечения прямой линии с плоскость – одна из основных задач начертательной геометрии.Существует три типа таких задач, две из которых являются частными случаями. Рассмотрим этапы решения каждой из них.

Задача 5.1. Построение точки пересечения прямой общего положения с плоскостью общего положения.

Для решения задачи применяют метод вспомогательных секущих плоскостей-посредников, преимущественно проецирующих (табл. 5.1).

Таблица 5.1







Дата добавления: 2015-09-15; просмотров: 588. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Билиодигестивные анастомозы Показания для наложения билиодигестивных анастомозов: 1. нарушения проходимости терминального отдела холедоха при доброкачественной патологии (стенозы и стриктуры холедоха) 2. опухоли большого дуоденального сосочка...

Сосудистый шов (ручной Карреля, механический шов). Операции при ранениях крупных сосудов 1912 г., Каррель – впервые предложил методику сосудистого шва. Сосудистый шов применяется для восстановления магистрального кровотока при лечении...

Трамадол (Маброн, Плазадол, Трамал, Трамалин) Групповая принадлежность · Наркотический анальгетик со смешанным механизмом действия, агонист опиоидных рецепторов...

Классификация холодных блюд и закусок. Урок №2 Тема: Холодные блюда и закуски. Значение холодных блюд и закусок. Классификация холодных блюд и закусок. Кулинарная обработка продуктов...

ТЕРМОДИНАМИКА БИОЛОГИЧЕСКИХ СИСТЕМ. 1. Особенности термодинамического метода изучения биологических систем. Основные понятия термодинамики. Термодинамикой называется раздел физики...

Травматическая окклюзия и ее клинические признаки При пародонтите и парадонтозе резистентность тканей пародонта падает...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия