Студопедия — Решение. По формуле (2.12) находим математическое ожидание:
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Решение. По формуле (2.12) находим математическое ожидание:






По формуле (2.12) находим математическое ожидание:

M[X] = x1p1 + x2p2 + x3p3 + x4p4 = 10 · 0.2 + 20 · 0.15 + 30 · 0.25 + 40 · 0.4 = 28.5

M[2X + 5] = 2M[X] + M[5] = 2M[X] + 5 = 2 · 28.5 + 5 = 62. По формуле (2.19) найдем дисперсию:

Задача. 2.2.2 Найти математическое ожидание, диспер­сию и среднее квадратичное отклонение непрерывной слу­чайной величины X, функция распределения которой

.

Решение. Найдем плотность вероятности:

Математическое ожидание найдем по формуле (2.13):

Дисперсию найдем по формуле (2.19):

Найдем сначала математическое ожидание квадрата случайной величины:

Тогда

Среднее квадратичное отклонение

Задача. 2.2.3 Дискретная случайная величина X имеет ряд распределения:

Найти математическое ожидание и дисперсию случайной величины Y = eX.

Решение. M[Y] = M[ eX ] = e-- 1 · 0.2 + e0 · 0.3 + e1 · 0.4 + e2 · 0.1 =

= 0.2 · 0.3679 + 1 · 0.3 + 2.71828 · 0.4 + 7.389 · 0.1 = 2.2.

D[Y] = D[ex] = M[(eX)2M2 [ e X] =

[(e-1)2 • 0.2 + (e0)2 • 0.3 + (e1)2 • 0.4 + (e2)2 • 0.1] — (2.2)2 =

= (e--2 • 0.2 + 0.3 + e2 • 0.4 + e4 • 0.1) — 4.84 = 8.741 — 4.84 = 3.9.

Задача. 2.2.4 Дискретная случайная величина X может принимать только два значения x1 и x2, причем x1 < x2. Известны вероятность p1 = 0.2 возможного значения x1, математическое ожидание M[X] = 3.8 и дисперсия D[X] = 0.16. Найти закон распределения случайной величины.

Решение. Так как случайная величина X принимает толь­ко два значения x1 и x2, то вероятность p2 = P(X = x2) = 1 - p1 = 1 - 0.2 = 0.8.

По условию задачи имеем:

M[X] = x1p1 + x2p2 = 0.2x1 + 0.8x2 = 3.8;

D[X] = (x21p1 + x22p2) - M2[X] = (0.2x21 + 0.8x22) - (0.38)2 = 0.16.

Таким образом получили систему уравнений:

Условию x1<x2 удовлетворяет решение x1 = 3. x = 4. По­этому искомый закон распределения имеет вид:

Задача. 2.2.5 Случайная величина X подчинена закону распределения, график плотности которого имеет вид:

Найти математическое ожидание, дисперсию и сред­нее квадратичное отклонение.

Решение. Найдем дифференциальную функцию распре­деления f(x). Вне интервала (0, 3) f(x) = 0. На интервале (0, 3) график плотности есть прямая с угловым коэффици­ентом k = 2/9, проходящая через начало координат. Таким образом,

Математическое ожидание:

Найдем дисперсию и среднее квадратичное отклоне­ние:

Задача. 2.2.6 Найти математическое ожидание и дис­персию суммы очков, выпадающих на четырех игральных кубиках при одном бросании.

Решение. Обозначим A — число очков на одном кубике при одном бросании, B – число очков на втором кубике, C — на третьем кубике, D — на четвертом кубике. Для случайных ве­личин A, B, C, D за­кон распределения один.

Тогда M[A] = M[B] = M[C] = M[D] = (1+2+3+4+5+6) / 6 = 3.5


Задача. 2.3.1 Вероятность того, что частица, вылетев­шая из радиоактивного источника, будет зарегистриро­вана счетчиком, равна 0.0001. За время наблюдения из ис­точника вылетело 30000 частиц. Найти вероятность то­го, что счетчик зарегистрировал:

1. ровно 3 частицы;

2. ни одной частицы;

3. не менее 10 частиц.

Решение. По условию п = 30000, p = 0.0001. События, со­стоящие в том, что частицы, вылетевшие из радиоактив­ного источника, зарегистрированы, независимы; число п велико, а вероятность p мала, поэтому воспользуемся рас­пределением Пуассона: Найдем λ: λ = п p = 30000 • 0.0001 = 3 = М[Х]. Искомые вероятности:

Задача. 2.3.2 В партии 5% нестандартных деталей. На­удачу отобраны 5 деталей. Написать закон распределе­ния дискретной случайной величины X — числа нестан­дартных деталей среди пяти отобранных; найти мате­матическое ожидание и дисперсию.

Решение. Дискретная случайная величина X — число нестандартных деталей — имеет биномиальное распреде­ление и может принимать следующие значения: x1 = 0, x2 = 1, x3 = 2, x4 = 3, x5 = 4, x6 = 5. Вероятность нестандарт­ной детали в партии p = 5/100 = 0.05. Найдем вероятности этих возможных значений:

Напишем искомый закон распределения:

Найдем числовые характеристики:

0 • 0.7737809 + 1 • 0.2036267 + 2 • 0.0214343+

+ 3 • 0.0011281 + 4 • 0.0000297 + 5 • 0.0000003 = 0.2499999 ≈ 0.250

или

M[X] = n • p = 5 • 0.05 = 0.25.

D[X] = M[X2 ] – M2 [X] = 02 • 0.7737809 + 12 • 0.2036267+

+ 22 • 0.0214343 + 32 • 0.0011281 + 42 • 0.0000297 + 52 • 0.0000003- 0.0625 =

= 0.2999995 - 0.0625 = 0.2374995 ≈ 0.2375

или D[X] = n • p • (1 - p) = 5 • 0.05 • 0.95 = 0.2375.

Задача. 2.3.3 Время обнаружения цели радиолокатором распределено по показательному закону

где 1/ λ = 10 сек. - среднее время обнаружения цели. Найти вероятность того, что цель будет обнаружена за время от 5 до 15 сек. после начала поиска.

Решение. Вероятность попадания случайной величины X в интервал (5, 15) найдем по формуле (2.8):

При получаем

= 0.6065(1 - 0.3679) = 0.6065 • 0.6321 = 0.3834

Задача. 2.3.4 Случайные ошибки измерения подчинены нормальному закону с параметрами a = 0, σ = 20 мм. За­писать дифференциальную функцию распределения f(x) и найти вероятность того, что при измерении допущена ошибка в интервале от 5 до 10 мм.

Решение. Подставим значения параметров a и σ в диффе­ренциальную функцию распределения (2.35):

По формуле (2.42) найдем вероятность попадания слу­чайной величины X в интервале [0, 5):

Здесь значения функции Лапласа взяты по таблице.

Задача. 2.3.5 Цена деления шкалы амперметра равна 0.1 ампера. Показания амперметра округляются до ближай­шего целого деления. Найти вероятность того, что при отсчете будет сделана ошибка, превышающая 0.03 ампе­ра. Найти математическое ожидание, дисперсию ошибки округления отсчета и функцию F(x).

Решение. Ошибку округления отсчета можно считать рас­пределенной равномерно на [0; 0.1], т.е. a = 0, b = 0.1. То­гда дифференциальная функция распределения f(x) будет иметь вид


 







Дата добавления: 2015-09-15; просмотров: 3034. Нарушение авторских прав; Мы поможем в написании вашей работы!



Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Стресс-лимитирующие факторы Поскольку в каждом реализующем факторе общего адаптацион­ного синдрома при бесконтрольном его развитии заложена потенци­альная опасность появления патогенных преобразований...

ТЕОРИЯ ЗАЩИТНЫХ МЕХАНИЗМОВ ЛИЧНОСТИ В современной психологической литературе встречаются различные термины, касающиеся феноменов защиты...

Этические проблемы проведения экспериментов на человеке и животных В настоящее время четко определены новые подходы и требования к биомедицинским исследованиям...

Виды и жанры театрализованных представлений   Проживание бронируется и оплачивается слушателями самостоятельно...

Что происходит при встрече с близнецовым пламенем   Если встреча с родственной душой может произойти достаточно спокойно – то встреча с близнецовым пламенем всегда подобна вспышке...

Реостаты и резисторы силовой цепи. Реостаты и резисторы силовой цепи. Резисторы и реостаты предназначены для ограничения тока в электрических цепях. В зависимости от назначения различают пусковые...

Studopedia.info - Студопедия - 2014-2024 год . (0.009 сек.) русская версия | украинская версия