ЛЕЙБНИЦ — МАЛЬБРАНШУ. Я ничего не знал об отъезде господ Арно и Николя и прошу Вас сообщить мне подробности об этом, если они Вам известны.
4 августа 1679 г.
Я ничего не знал об отъезде господ Арно и Николя и прошу Вас сообщить мне подробности об этом, если они Вам известны.
«Христианские беседы» г-на аббата Катлана и «Метафизические размышления» г-на аббата Ланьона имеют так много общего с мыслями, высказанными Вами в «Разысканиях истины», что я вряд ли совершил большую ошибку, связав их с Вашим именем. Прошу Вас, расскажите мне подробнее об этих господах и особах подобного же дарования, так как знакомство с ними доставляет мне большую радость. Приятно, что умные и заслуженные люди посвящают себя занятиям метафизике^ ибо предстоит еще сделать немало важных открытий. Вы тонко
==317
оценили всю предварительную работу, которую я сделал в этой области.
Относительно корней уравнений вот мое мнение. Я полагаю, что решение всех уравнений геометрически, путем простого нахождения средних пропорциональных, невозможно, однако я не считаю невозможным выразить значение неизвестного в общем уравнении любой степени при помощи иррациональной формулы, наподобие корней Кардана, так как, по-моему, корни Кардана являются общими для кубического уравнения независимо от того„ что в выражение иногда входит мнимое число. Мне кажется, я уже высказывал Вам нечто в этом роде. Я различаю анализ, т. е. выражение значений, и геометрию, т. е. способы построения. Я говорю, что значение неизвестного найдено аналитически, если я могу его выразить целиком и только с помощью истинной формулы. Ибо даже если эта формула не всегда годится для построения, она все равно останется целью алгебры, которая отыскивает чистые значения, и к совершенному познанию искомого неизвестного (отвлекаясь от линий и от чисел) можно прийти лишь при условии, что получено это значение. Например: ж3 + рх равно q есть общее уравнение, корень которого х равен г |/ —?+Т/ -/ ^ + 97 Р + + у -у- q — Т/ -, q2 + у, Р3, что является истинным значением неизвестного во всех случаях, независимо от перемены знаков. И оно не может не быть корнем, поскольку всегда удовлетворяет уравнению.
Но чтобы доказать Вам это a priori, скажите, верно ли, что 2+^—1+2— V—1 есть действительная величина? Без сомнения, это так, ибо она равняется 4. А куб величины 2+:^/—1 есть -{-2+11]/^—1, следовательно, y+2+iiY^i равен 2-t--^/"rrT. Однако У+2 - 11]/^1 равен 2—-У—-1, следовательно, V +2 +11,]/"—1+ +Y+2— i\Y—1 равен 4. Таким образом, если бы корень Кардана дал Вам формулу х равен
V+2 +11 y^i+V+2 - 11 V^, Вы могли бы извлечь кубический корень из +2+11 Ч/—1 и получили бы
-j-2+V^—1> а извлекая кубический корень из +2—
—i\.Y—1, получили бы -\-2—Y—1. Соединяя вместе
==318
оба корня, Вы получите: х равен Т^+2+11^—1+
-t-V^+2-llV -1, т. е. равен -}-2+У^1+2-У^1, т. е. 4м
Но для того чтобы извлекать кубический корень из
такого бинома, как 2 + 1Г^ — 1, правило Шотена, приводимое в конце его комментария, недостаточно. Требуется другое, и я его нашел: оно гораздо более общее и более красивое. Однако, если и невозможно извлечь корень из такого мнимого бинома, совокупная сумма корней
обоих мнимых биномов V + а + У — Ь-тУ -\- а —у — Ь не перестает быть действительной величиной и уничтожение мнимого происходит на самом деле виртуально, хотя и невозможно продемонстрировать это в числах; зато мое правило извлечения убеждает в этом, по крайней мере для случая приближения сколь угодно точного.
Так как это вполне очевидно, Вы не сочтете странным, если я скажу Вам, что можно найти общие корни для [уравнений] высших степеней, например пятой степени. Действительно, в некоторых случаях я нашел такую возможность и могу дать иррациональные корни некоторых непонижаемых (indeprimable) уравнений пятой, седьмой, девятой степеней и т. д. до бесконечности. Тем самым я нашел безошибочный способ получения общих корней для какой бы то ни было степени. Но чтобы облегчить их вычисление, следовало бы составить предварительно некоторые таблицы, а я пока не имею времени этим заняться.
Все это я обдумал, еще когда был в Париже, где в то время находился и тот самый дворянин из Германии, о котором Вы слышали и которого я ставлю очень высоко. После этого он отправился в Италию, а затем вернулся в Париж; ему я сообщил мои результаты и побудил его развивать их дальше. Прежде он надеялся отыскать действительные корни для всех родов уравнений одной и той же степени, введенный в заблуждение нашими авторами, которые утверждали, что корни Кардана для [уравнений] третьей степени являются лишь частными корнями, Но я доказал ему, что на самом деле они являются общими и что для других случаев другие корни найти невозможно. С тех пор он много трудился и время от времени сообщал мне о своих успехах. Однако до сего времени он не сумел добиться решения уравнений пятой степени, о чем я сужу по весьма пространному письму, которое я получил от
==319
него недавно и на которое я ответил. Дело это сложнее, чем думают. И все же я имею доказательство того, что оно может быть решено успешно. Но для этого нужно будет составить некоторые алгебраические таблицы, иначе придется делать слишком много вычислений. Таблицы, которые я задумал, могли бы служить великолепным подспорьем для всей алгебры. Однако довольно об этом. Мне хотелось бы знать, находится ли в Париже г-н герцог де Роанне и как поживает г-н де Бийет, которому я желаю доброго здоровья.
|