Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Исходные данные для решения задачи 2





Показатель Вариант
                   
λ 1,37 1,62 1,42 1,83 1,75 1,55 1,4 1,65 1,7 1,3
об 2,3     2,5 1,5 1,7 1,2 2,6   2,5

Указание. Прежде чем использовать формулы предельных вероятностей, необходимо быть уверенным в их существовании, ведь в случае, когда время t → , очередь может неограниченно возрастать. Доказано, что если ρ < 1, т. е. среднее число приходящих заявок меньше среднего числа обслуженных заявок (в единицу времени), то предельные вероятности существуют. Если ρ ≥ 1, очередь растет до бесконечности. Очередь не будет возрастать до бесконечности при условии ρ /n < 1, т. е. при n > ρ.

Решение. n > 1, m = , т. е. имеем многоканальную систему с неограниченной очередью. По условию λ = 1,35 (1/мин). Показатель нагрузки системы определяется по формуле (4.2): ρ = 1,35∙2 = 2,7.

Очередь не будет возрастать до бесконечности при условии ρ / n < 1, т. е. при n > ρ = 2,7. Таким образом, минимальное количество контролеров-кассиров nmin = 3.

Найдем характеристики обслуживания СМО при nmin = 3.

Вероятность того, что в узле расчета отсутствуют покупатели, определяется по формуле

 

, (4.8)

 

р0 = (1 + 2,7 + 2,72/2! + 2,73/3! + 2,74/3! ∙ (3 – 2,7))–1 = 0,025, т. е. в среднем 2,5 % времени контролеры-кассиры будут простаивать.

Вероятность того, что в узле расчета будет очередь, определяется по формуле

 

, (4.9)

 

Роч = (2,74/3!(3 – 2,7)) ∙ 0,025 = 0,735.

Среднее число покупателей, находящихся в очереди, определяется по формуле

 

, (4.10)

 

оч = (2,74/3 ∙ 3!(1 – 2,7/3)2) ∙ 0,025 = 7,35.

Среднее время ожидания в очереди определяется по формуле

 

, (4.11)

 

оч = 7,35/1,35 = 5,44 мин.

Среднее число покупателей в узле расчета определяется по формуле

 

, (4.12)

 

сист = 7,35 + 2,7 = 10,05.

Среднее время нахождения покупателей в узле расчета определяется по формуле

 

, (4.13)

 

сис = 10,05/1,35 = 7,44 мин.

Среднее число контролеров-кассиров, занятых обслуживанием покупателей, определяется по формуле

 

, (4.14)

 

= 2,7.

Коэффициент (доля) занятых обслуживанием контролеров-кассиров

= ρ/n = 2,7/3 = 0,9.

Абсолютная пропускная способность узла расчета А = 1,35 (1/мин), или 81 (1/ч), т. е. 81 покупатель в час.

Вывод. Анализ характеристик обслуживания свидетельствует о значительной перегрузке узла расчета при наличии трех кассиров.

Задача 3. На грузовой станции имеется два выгрузочных фронта. Интенсивность подхода составов под выгрузку составляет 0,4 состава в сутки. Среднее время разгрузки одного состава – 2 суток. Приходящий поезд отправляется на другую станцию, если в очереди на разгрузку стоят более трёх составов. Оценить эффективность работы выгрузочных фронтов грузовой станции: вероятность, что выгрузочные фронты свободны, вероятность, что состав останется без разгрузки, относительную пропускную способность, абсолютную пропускную способность, среднее число поездов, ожидающих разгрузки, среднее число заявок в системе, среднее время пребывания заявки в очереди, среднее время пребывания заявки в системе (табл. 4.4).

Таблица 4.4







Дата добавления: 2015-08-31; просмотров: 685. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Хронометражно-табличная методика определения суточного расхода энергии студента Цель: познакомиться с хронометражно-табличным методом опреде­ления суточного расхода энергии...

ОЧАГОВЫЕ ТЕНИ В ЛЕГКОМ Очаговыми легочными инфильтратами проявляют себя различные по этиологии заболевания, в основе которых лежит бронхо-нодулярный процесс, который при рентгенологическом исследовании дает очагового характера тень, размерами не более 1 см в диаметре...

Примеры решения типовых задач. Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2   Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2. Найдите константу диссоциации кислоты и значение рК. Решение. Подставим данные задачи в уравнение закона разбавления К = a2См/(1 –a) =...

Гальванического элемента При контакте двух любых фаз на границе их раздела возникает двойной электрический слой (ДЭС), состоящий из равных по величине, но противоположных по знаку электрических зарядов...

Сущность, виды и функции маркетинга персонала Перснал-маркетинг является новым понятием. В мировой практике маркетинга и управления персоналом он выделился в отдельное направление лишь в начале 90-х гг.XX века...

Разработка товарной и ценовой стратегии фирмы на российском рынке хлебопродуктов В начале 1994 г. английская фирма МОНО совместно с бельгийской ПЮРАТОС приняла решение о начале совместного проекта на российском рынке. Эти фирмы ведут деятельность в сопредельных сферах производства хлебопродуктов. МОНО – крупнейший в Великобритании...

Studopedia.info - Студопедия - 2014-2025 год . (0.008 сек.) русская версия | украинская версия