Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Исходные данные для решения задачи 2





Показатель Вариант
                   
λ 1,37 1,62 1,42 1,83 1,75 1,55 1,4 1,65 1,7 1,3
об 2,3     2,5 1,5 1,7 1,2 2,6   2,5

Указание. Прежде чем использовать формулы предельных вероятностей, необходимо быть уверенным в их существовании, ведь в случае, когда время t → , очередь может неограниченно возрастать. Доказано, что если ρ < 1, т. е. среднее число приходящих заявок меньше среднего числа обслуженных заявок (в единицу времени), то предельные вероятности существуют. Если ρ ≥ 1, очередь растет до бесконечности. Очередь не будет возрастать до бесконечности при условии ρ /n < 1, т. е. при n > ρ.

Решение. n > 1, m = , т. е. имеем многоканальную систему с неограниченной очередью. По условию λ = 1,35 (1/мин). Показатель нагрузки системы определяется по формуле (4.2): ρ = 1,35∙2 = 2,7.

Очередь не будет возрастать до бесконечности при условии ρ / n < 1, т. е. при n > ρ = 2,7. Таким образом, минимальное количество контролеров-кассиров nmin = 3.

Найдем характеристики обслуживания СМО при nmin = 3.

Вероятность того, что в узле расчета отсутствуют покупатели, определяется по формуле

 

, (4.8)

 

р0 = (1 + 2,7 + 2,72/2! + 2,73/3! + 2,74/3! ∙ (3 – 2,7))–1 = 0,025, т. е. в среднем 2,5 % времени контролеры-кассиры будут простаивать.

Вероятность того, что в узле расчета будет очередь, определяется по формуле

 

, (4.9)

 

Роч = (2,74/3!(3 – 2,7)) ∙ 0,025 = 0,735.

Среднее число покупателей, находящихся в очереди, определяется по формуле

 

, (4.10)

 

оч = (2,74/3 ∙ 3!(1 – 2,7/3)2) ∙ 0,025 = 7,35.

Среднее время ожидания в очереди определяется по формуле

 

, (4.11)

 

оч = 7,35/1,35 = 5,44 мин.

Среднее число покупателей в узле расчета определяется по формуле

 

, (4.12)

 

сист = 7,35 + 2,7 = 10,05.

Среднее время нахождения покупателей в узле расчета определяется по формуле

 

, (4.13)

 

сис = 10,05/1,35 = 7,44 мин.

Среднее число контролеров-кассиров, занятых обслуживанием покупателей, определяется по формуле

 

, (4.14)

 

= 2,7.

Коэффициент (доля) занятых обслуживанием контролеров-кассиров

= ρ/n = 2,7/3 = 0,9.

Абсолютная пропускная способность узла расчета А = 1,35 (1/мин), или 81 (1/ч), т. е. 81 покупатель в час.

Вывод. Анализ характеристик обслуживания свидетельствует о значительной перегрузке узла расчета при наличии трех кассиров.

Задача 3. На грузовой станции имеется два выгрузочных фронта. Интенсивность подхода составов под выгрузку составляет 0,4 состава в сутки. Среднее время разгрузки одного состава – 2 суток. Приходящий поезд отправляется на другую станцию, если в очереди на разгрузку стоят более трёх составов. Оценить эффективность работы выгрузочных фронтов грузовой станции: вероятность, что выгрузочные фронты свободны, вероятность, что состав останется без разгрузки, относительную пропускную способность, абсолютную пропускную способность, среднее число поездов, ожидающих разгрузки, среднее число заявок в системе, среднее время пребывания заявки в очереди, среднее время пребывания заявки в системе (табл. 4.4).

Таблица 4.4







Дата добавления: 2015-08-31; просмотров: 685. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Объект, субъект, предмет, цели и задачи управления персоналом Социальная система организации делится на две основные подсистемы: управляющую и управляемую...

Законы Генри, Дальтона, Сеченова. Применение этих законов при лечении кессонной болезни, лечении в барокамере и исследовании электролитного состава крови Закон Генри: Количество газа, растворенного при данной температуре в определенном объеме жидкости, при равновесии прямо пропорциональны давлению газа...

Ганглиоблокаторы. Классификация. Механизм действия. Фармакодинамика. Применение.Побочные эфффекты Никотинчувствительные холинорецепторы (н-холинорецепторы) в основном локализованы на постсинаптических мембранах в синапсах скелетной мускулатуры...

Травматическая окклюзия и ее клинические признаки При пародонтите и парадонтозе резистентность тканей пародонта падает...

Подкожное введение сывороток по методу Безредки. С целью предупреждения развития анафилактического шока и других аллергических реак­ций при введении иммунных сывороток используют метод Безредки для определения реакции больного на введение сыворотки...

Принципы и методы управления в таможенных органах Под принципами управления понимаются идеи, правила, основные положения и нормы поведения, которыми руководствуются общие, частные и организационно-технологические принципы...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия