Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Платёжная матрица





Вj Аi В1 В2 Вn
А1 а11 а12 а1n
А2 а21 а22 а2n
Аm аm1 аm2 аmn

 

Рассмотрим игру m × n с матрицей и определим наилучшую среди стратегий A1, A2, …, Аm. Выбирая стратегию Аi игрок А должен рассчитывать, что игрок В ответит на нее той из стратегий Bj, для которой выигрыш для игрока А минимален (игрок В стремится «навредить» игроку А).

Обозначим через α наименьший выигрыш игрока А при выборе им стратегии А; для всех возможных стратегий игрока В (наименьшее число в i-й строке платежной матрицы).

Назовем α нижней ценой игры, или максимальным выигрышем (максимином). Это гарантированный выигрыш игрока А при любой стратегии игрока В. Следовательно,

 

. (5.1)

 

Стратегия, соответствующая максимину, называется максиминной стратегией. Игрок В заинтересован в том, чтобы уменьшить выигрыш игрока А; выбирая стратегию Bj, он учитывает максимально возможный при этом выигрыш для А. Назовем В верхней ценой игры, или минимаксным выигрышем (минимаксом). Это гарантированный проигрыш игрока В. Следовательно,

 

. (5.2)

 

Стратегия, соответствующая минимаксу, называется минимаксной стратегией.

Принцип, диктующий игрокам выбор наиболее «осторожных» минимаксной и максиминной стратегий, называется принципом минимакса. Этот принцип следует из разумного предположения, что каждый игрок стремится достичь цели, противоположной цели противника.

Если верхняя и нижняя цены игры совпадают, то общее значение верхней и нижней цены игры α = β = ν называется чистой ценой игры, или ценой игры.

Минимаксные стратегии, соответствующие цене игры, являются оптимальными стратегиями, а их совокупность – оптимальным решением, или решением игры. В этом случае игрок А получает максимальный гарантированный (не зависящий от поведения игрока В) выигрыш ν, а игрок В добивается минимального гарантированного (вне зависимости от поведения игрока А) проигрыша ν. Говорят, что решение игры обладает устойчивостью, т. е. если один из игроков придерживается своей оптимальной стратегии, то для другого не может быть выгодным отклоняться от своей оптимальной стратегии.

Пара чистых стратегий Ai и Bj дает оптимальное решение игры тогда и только тогда, когда соответствующий ей элемент аij является одновременно наибольшим в своем столбце и наименьшим в своей строке. Такая ситуация, если она существует, называется седловой точкой (по аналогии с поверхностью седла, которая искривляется вверх в одном направлении и вниз – в другом).

Обозначим А* и В* – пару чистых стратегий, на которых достигается решение игры в задаче с седловой точкой. Введем функцию выигрыша первого игрока на каждой паре стратегий: P(Ai Bj) = аij. Тогда из условия оптимальности в седловой точке выполняется двойное неравенство: P(Ai, B*) ≤ Р(А*, В*) ≤ P(A*, Bj), которое справедливо для всех . Действительно, выбор стратегии А* первым игроком при оптимальной стратегии В* второго игрока максимизирует минимальный возможный выигрыш: Р(А*, В*) ≥ P(Ai, B*), а выбор стратегии В* вторым игроком при оптимальной стратегии первого минимизирует максимальный проигрыш: Р(А*, В*) ≤ P(A*, Bj).

 

5.3. Решение игр в смешанных стратегиях. Приведение

матричной игры к задаче линейного программирования

 

Если игра не имеет седловой точки, то применение чистых стратегий не дает оптимального решения игры. В таком случае можно получить оптимальное решение, случайным образом чередуя чистые стратегии.

Смешанной стратегией игрока А называется применение чистых стратегий A1, A2, …, Аm с вероятностями р1, р2, …, рm, причем сумма вероятностей равна: . Смешанные стратегии игрока А записываются в виде . Аналогично смешанные стратегии игрока В обозначаются как , где сумма вероятностей появления стратегий .

Чистые стратегии можно считать частным случаем смешанных и задавать строкой, в которой 1 соответствует чистой стратегии. На основании принципа минимакса определяется оптимальное решение (или решение) игры: это пара оптимальных стратегий S*A, S*В, в общем случае смешанных, обладающих следующим свойством: если один из игроков придерживается своей оптимальной стратегии, то другому не может быть выгодно отступать от своей. Выигрыш, соответствующий оптимальному решению, называется ценой игры ν. Цена игры удовлетворяет неравенству α ≤ v ≤ β, где α и β – нижняя и верхняя цены игры.

Пусть и – пара оптимальных стратегий.

Решение задачи линейного программирования (ЛП) определяет оптимальную стратегию . При этом цена игры

 

. (5.3)

 

Очевидно, при определении оптимальных стратегий в конкретных задачах следует выбрать ту из взаимно-двойственных задач, решение которой менее трудоемко, а решение другой задачи найти с помощью теорем двойственности.

 

5.4. Примеры решения задач систем массового обслуживания

Пример 1. Предприятие может выпускать три вида продукции (А1, A2 и А3), получая при этом прибыль, зависящую от спроса, который может быть в одном из трёх состояний (В1, В2 и В3). Дана матрица (табл. 5.2), ее элементы аij характеризуют прибыль, которую получит предприятие при выпуске i-й продукции с j-м состоянием спроса.

Таблица 5.2







Дата добавления: 2015-08-31; просмотров: 872. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Седалищно-прямокишечная ямка Седалищно-прямокишечная (анальная) ямка, fossa ischiorectalis (ischioanalis) – это парное углубление в области промежности, находящееся по бокам от конечного отдела прямой кишки и седалищных бугров, заполненное жировой клетчаткой, сосудами, нервами и...

Основные структурные физиотерапевтические подразделения Физиотерапевтическое подразделение является одним из структурных подразделений лечебно-профилактического учреждения, которое предназначено для оказания физиотерапевтической помощи...

Почему важны муниципальные выборы? Туристическая фирма оставляет за собой право, в случае причин непреодолимого характера, вносить некоторые изменения в программу тура без уменьшения общего объема и качества услуг, в том числе предоставлять замену отеля на равнозначный...

Травматическая окклюзия и ее клинические признаки При пародонтите и парадонтозе резистентность тканей пародонта падает...

Подкожное введение сывороток по методу Безредки. С целью предупреждения развития анафилактического шока и других аллергических реак­ций при введении иммунных сывороток используют метод Безредки для определения реакции больного на введение сыворотки...

Принципы и методы управления в таможенных органах Под принципами управления понимаются идеи, правила, основные положения и нормы поведения, которыми руководствуются общие, частные и организационно-технологические принципы...

Studopedia.info - Студопедия - 2014-2025 год . (0.008 сек.) русская версия | украинская версия