Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Платёжная матрица





Вj Аi В1 В2 Вn
А1 а11 а12 а1n
А2 а21 а22 а2n
Аm аm1 аm2 аmn

 

Рассмотрим игру m × n с матрицей и определим наилучшую среди стратегий A1, A2, …, Аm. Выбирая стратегию Аi игрок А должен рассчитывать, что игрок В ответит на нее той из стратегий Bj, для которой выигрыш для игрока А минимален (игрок В стремится «навредить» игроку А).

Обозначим через α наименьший выигрыш игрока А при выборе им стратегии А; для всех возможных стратегий игрока В (наименьшее число в i-й строке платежной матрицы).

Назовем α нижней ценой игры, или максимальным выигрышем (максимином). Это гарантированный выигрыш игрока А при любой стратегии игрока В. Следовательно,

 

. (5.1)

 

Стратегия, соответствующая максимину, называется максиминной стратегией. Игрок В заинтересован в том, чтобы уменьшить выигрыш игрока А; выбирая стратегию Bj, он учитывает максимально возможный при этом выигрыш для А. Назовем В верхней ценой игры, или минимаксным выигрышем (минимаксом). Это гарантированный проигрыш игрока В. Следовательно,

 

. (5.2)

 

Стратегия, соответствующая минимаксу, называется минимаксной стратегией.

Принцип, диктующий игрокам выбор наиболее «осторожных» минимаксной и максиминной стратегий, называется принципом минимакса. Этот принцип следует из разумного предположения, что каждый игрок стремится достичь цели, противоположной цели противника.

Если верхняя и нижняя цены игры совпадают, то общее значение верхней и нижней цены игры α = β = ν называется чистой ценой игры, или ценой игры.

Минимаксные стратегии, соответствующие цене игры, являются оптимальными стратегиями, а их совокупность – оптимальным решением, или решением игры. В этом случае игрок А получает максимальный гарантированный (не зависящий от поведения игрока В) выигрыш ν, а игрок В добивается минимального гарантированного (вне зависимости от поведения игрока А) проигрыша ν. Говорят, что решение игры обладает устойчивостью, т. е. если один из игроков придерживается своей оптимальной стратегии, то для другого не может быть выгодным отклоняться от своей оптимальной стратегии.

Пара чистых стратегий Ai и Bj дает оптимальное решение игры тогда и только тогда, когда соответствующий ей элемент аij является одновременно наибольшим в своем столбце и наименьшим в своей строке. Такая ситуация, если она существует, называется седловой точкой (по аналогии с поверхностью седла, которая искривляется вверх в одном направлении и вниз – в другом).

Обозначим А* и В* – пару чистых стратегий, на которых достигается решение игры в задаче с седловой точкой. Введем функцию выигрыша первого игрока на каждой паре стратегий: P(Ai Bj) = аij. Тогда из условия оптимальности в седловой точке выполняется двойное неравенство: P(Ai, B*) ≤ Р(А*, В*) ≤ P(A*, Bj), которое справедливо для всех . Действительно, выбор стратегии А* первым игроком при оптимальной стратегии В* второго игрока максимизирует минимальный возможный выигрыш: Р(А*, В*) ≥ P(Ai, B*), а выбор стратегии В* вторым игроком при оптимальной стратегии первого минимизирует максимальный проигрыш: Р(А*, В*) ≤ P(A*, Bj).

 

5.3. Решение игр в смешанных стратегиях. Приведение

матричной игры к задаче линейного программирования

 

Если игра не имеет седловой точки, то применение чистых стратегий не дает оптимального решения игры. В таком случае можно получить оптимальное решение, случайным образом чередуя чистые стратегии.

Смешанной стратегией игрока А называется применение чистых стратегий A1, A2, …, Аm с вероятностями р1, р2, …, рm, причем сумма вероятностей равна: . Смешанные стратегии игрока А записываются в виде . Аналогично смешанные стратегии игрока В обозначаются как , где сумма вероятностей появления стратегий .

Чистые стратегии можно считать частным случаем смешанных и задавать строкой, в которой 1 соответствует чистой стратегии. На основании принципа минимакса определяется оптимальное решение (или решение) игры: это пара оптимальных стратегий S*A, S*В, в общем случае смешанных, обладающих следующим свойством: если один из игроков придерживается своей оптимальной стратегии, то другому не может быть выгодно отступать от своей. Выигрыш, соответствующий оптимальному решению, называется ценой игры ν. Цена игры удовлетворяет неравенству α ≤ v ≤ β, где α и β – нижняя и верхняя цены игры.

Пусть и – пара оптимальных стратегий.

Решение задачи линейного программирования (ЛП) определяет оптимальную стратегию . При этом цена игры

 

. (5.3)

 

Очевидно, при определении оптимальных стратегий в конкретных задачах следует выбрать ту из взаимно-двойственных задач, решение которой менее трудоемко, а решение другой задачи найти с помощью теорем двойственности.

 

5.4. Примеры решения задач систем массового обслуживания

Пример 1. Предприятие может выпускать три вида продукции (А1, A2 и А3), получая при этом прибыль, зависящую от спроса, который может быть в одном из трёх состояний (В1, В2 и В3). Дана матрица (табл. 5.2), ее элементы аij характеризуют прибыль, которую получит предприятие при выпуске i-й продукции с j-м состоянием спроса.

Таблица 5.2







Дата добавления: 2015-08-31; просмотров: 872. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Классификация потерь населения в очагах поражения в военное время Ядерное, химическое и бактериологическое (биологическое) оружие является оружием массового поражения...

Факторы, влияющие на степень электролитической диссоциации Степень диссоциации зависит от природы электролита и растворителя, концентрации раствора, температуры, присутствия одноименного иона и других факторов...

Йодометрия. Характеристика метода Метод йодометрии основан на ОВ-реакциях, связанных с превращением I2 в ионы I- и обратно...

Экспертная оценка как метод психологического исследования Экспертная оценка – диагностический метод измерения, с помощью которого качественные особенности психических явлений получают свое числовое выражение в форме количественных оценок...

В теории государства и права выделяют два пути возникновения государства: восточный и западный Восточный путь возникновения государства представляет собой плавный переход, перерастание первобытного общества в государство...

Закон Гука при растяжении и сжатии   Напряжения и деформации при растяжении и сжатии связаны между собой зависимостью, которая называется законом Гука, по имени установившего этот закон английского физика Роберта Гука в 1678 году...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия