Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

ДИНАМИЧЕСКОЕ ПРОГРАММИРОВАНИЕ





 

6.1. Постановка задачи динамического программирования

Динамическое программирование (иначе, динамическое планирование) представляет собой особый математический метод оптимизации решений, специально приспособленный к многошаговым (или многоэтапным) операциям. Для задач динамического программирования универсального метода решения не существует. Одним из основных методов динамического программирования является метод рекуррентных[2] соотношений, который основывается на использовании принципа оптимальности.

Принцип оптимальности – каково бы ни было состояние системы в результате какого-либо числа шагов, на ближайшем шаге нужно выбирать управление так, чтобы оно в совокупности с оптимальным управлением на всех последующих шагах приводило к оптимальному выигрышу на всех оставшихся шагах, включая данный. На каждом шагу ищется такое управление, которое обеспечивает оптимальное продолжение процесса относительно достигнутого в данный момент состояния.

Процесс управления должен быть без обратной связи, т. е. управление на данном шаге не должно оказывать влияния на предшествующие шаги.

Экономические задачи, решаемые методами динамического программирования:

1) оптимальная стратегия замены оборудования;

2) оптимальное распределение ресурсов;

3) распределение инвестиций для эффективного использования потенциала предприятия;

4) минимизация затрат на строительство и эксплуатацию предприятий;

5) нахождение рациональных затрат при строительстве трубопроводов и транспортных артерий.

Математическая модель задач динамического программирования формулируется следующим образом.

Пусть дана операция О, состоящая из m шагов (этапов). Эффективность операции характеризуется показателем «выигрышем» – W. Выигрыш W за всю операцию складывается из выигрышей на отдельных шагах:

, (6.1)

 

где wi – выигрыш на i-м шаге.

Если W обладает таким свойством, то его называют аддитивным критерием.

Совокупность всех шаговых управлений представляет собой управление операцией в целом:

 

. (6.2)

 

Следует иметь в виду, что в общем случае – не числа, а может быть, векторы, функции и т. д.

Требуется найти такое управление х, при котором выигрыш W обращается в максимум:

 

. (6.3)

 

То управление х*, при котором этот максимум достигается, называется оптимальным управлением. Оно состоит из совокупности оптимальных шаговых управлений , максимальный выигрыш, который достигается при этом управлении, обозначается W*:

 

. (6.4)

 

Формула (6.4) читается так: величина W* есть максимум из всех W(x) при разных управлениях х (максимум берется по всем управлениям х, возможным в данных условиях).

6.2. Пример решения задачи динамического программирования

 

Прокладывается участок железнодорожного пути между пунктами А и В. Требуется так провести дорогу из А в В, чтобы суммарные затраты на сооружение участка были минимальны. Для решения задачи необходимо разделить отрезок АВ на m частей, провести через точки деления прямые, перпендикулярные АВ, и считать за «шаг» переход с одной такой прямой на другую. На каждом шаге можем двигаться либо строго на восток (по оси X), либо строго на север (по оси Y). Тогда путь от А в В представляет ступенчатую ломаную линию, отрезки которой параллельны одной из координатных осей. Затраты на сооружение каждого из отрезков, млн. р., известны (рис. 6.1). Управление всей операцией состоит из совокупности шаговых управлений: , требуется выбрать такое (оптимальное) управление х*, при котором суммарные затраты на сооружение всех участков минимальны: .

 

 

Рис. 6.1. Затраты на сооружение каждого отрезка пути

 

Разделим расстояние от А до В в восточном направлении на 4 части, в северном – на 3 части. Путь можно рассматри­вать как управляемую систему, перемещающуюся под влияни­ем управления из начального состояния А в конечное В. Со­стояние этой системы перед началом каждого шага будет характеризоваться двумя целочисленными координатами х и у. Для каждого из состояний системы (узловой точки) найдем условное оптимальное управление. Оно выбирается так, что­бы стоимость всех оставшихся шагов до конца процесса была минимальна. Процедуру условной оптимизации проводим в об­ратном направлении, т. е. от точки В к точке А.

Найдем условную оптимизацию последнего шага (рис. 6.2, а).

 

б
а

 

Рис. 6.2. Условная оптимизация шагов решения: а – последний шаг; б – предпоследний шаг

 

В точку В можно попасть точки из B1 или В2. В узлах записана стоимость пути. Стрелкой показан минимальный путь.

Рассмотрим предпоследний шаг (рис. 6.2, б).

Для точки В3 условное управление – по оси X, а для точки B5 – по оси Y. Управление для точки В4 выбираем как , т. е. по оси Y.

Условная оптимизация для всех остальных уз­ловых точек показана на рис. 6.3.

 

 

Рис. 6.3. Затраты на сооружение каждого отрезка пути

Получим , где с – север, в – восток.

Минимальные затраты составляют 10 + 13 + 8 + 12 + 9 + 9 + 10 = = 71 млн. руб.

Если решать задачу исходя из оптимальности на каждом этапе, то решение будет следующим:

Затраты составят 10 + 12 + 11 + 10 + 9 + 13 + 10 = 75 > 71.

Ответ. Прокладывать путь целесообразно по схеме: с, с, в, с, в, в, в, при этом затраты будут минимальные и составят 71 млн. руб.

6.3. Исходные данные

 

Проложить железнодорожную линию между двумя пунктами А и В так, чтобы суммарные затраты на её постройку были минимальные. Исходные данные по затратам, млн. руб., для проведения расчетов представлены в табл. 6.1, структура сети – на рис. 6.3.

 

Таблица 6.1







Дата добавления: 2015-08-31; просмотров: 996. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Хронометражно-табличная методика определения суточного расхода энергии студента Цель: познакомиться с хронометражно-табличным методом опреде­ления суточного расхода энергии...

ОЧАГОВЫЕ ТЕНИ В ЛЕГКОМ Очаговыми легочными инфильтратами проявляют себя различные по этиологии заболевания, в основе которых лежит бронхо-нодулярный процесс, который при рентгенологическом исследовании дает очагового характера тень, размерами не более 1 см в диаметре...

Примеры решения типовых задач. Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2   Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2. Найдите константу диссоциации кислоты и значение рК. Решение. Подставим данные задачи в уравнение закона разбавления К = a2См/(1 –a) =...

КОНСТРУКЦИЯ КОЛЕСНОЙ ПАРЫ ВАГОНА Тип колёсной пары определяется типом оси и диаметром колес. Согласно ГОСТ 4835-2006* устанавливаются типы колесных пар для грузовых вагонов с осями РУ1Ш и РВ2Ш и колесами диаметром по кругу катания 957 мм. Номинальный диаметр колеса – 950 мм...

Философские школы эпохи эллинизма (неоплатонизм, эпикуреизм, стоицизм, скептицизм). Эпоха эллинизма со времени походов Александра Македонского, в результате которых была образована гигантская империя от Индии на востоке до Греции и Македонии на западе...

Демографияда "Демографиялық жарылыс" дегеніміз не? Демография (грекше демос — халық) — халықтың құрылымын...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия