Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

По основным формам тренда





 

Форма тренда
Линейный 0,6661
Экспотенциальный 0,6762
Степенная функция 0,464
Логарифмическая 0,68
Параболическая 0,6961

 

В нашем случае скорректированный коэффициент детерминации принимает максимальное значение по параболическому уравнению тренда, в котором свободным членом b будет число, находящееся в первой строке под данными количества перевезенных пассажиров железнодорожным транспортом, первым зависимым элементом m1 – среднее значение, расположенное под порядковым номером квартала, а вторым зависимым элементом m2 – первое значение строки, находящееся под квадратичными величинами номера квартала. Номер квартала t в этом случае является множителем зависимого числа. Таким образом, уравнение тренда имеет следующий вид:

 

. (7.2)

 

Подставив в это уравнение значения t = 1, …, 16, найдём уровни Т для каждого момента времени (гр. 5 табл. 7.4). График уравнения тренда приведён на рис. 7.5.

 

 

Рис. 7.5. Количество перевезенных пассажиров (фактические, выравненные и полученные по аддитивной модели)

 

Шаг 5. Найдём значения уровня ряда, полученные по аддитивной модели. Для этого прибавим к уровням Т значения сезонной компоненты для соответствующих кварталов. Графически значения (Т + S) представлены на рис. 7.5.

Шаг 6. В соответствии с методикой построения аддитивной модели расчёт ошибки производится по формуле E = Y – (T + S). Это абсолютная ошибка.

Для оценки качества построенной модели применим сумму квадратов полученных абсолютных ошибок:

 

, (7.3)

 

где – среднее арифметическое количества перевезенных пассажиров.

В нашем случае коэффициент равен 0,696. Это означает, что аддитивная модель на 69,6 % объясняет общую вариацию количества перевезенных пассажиров по кварталам за 4 года.

Прогнозирование по аддитивной модели осуществляется в следующем порядке. Предположим, что требуется дать прогноз потребления электроэнергии в течение ближайшего следующего года.

Прогнозное значение Ft уровня временного ряда в аддитивной модели в соответствии с соотношением Y = T + S + E есть сумма трендовой и сезонной компонент: Ft = Tt + Si.

Для определения трендовой компоненты воспользуемся уравнением тренда, а значения сезонной компоненты были рассчитаны на начальном этапе.

Таким образом, прогнозные значения перевезённых пассажиров будут иметь следующий вид:

;

;

;

.

Значения сезонной компоненты:

S1 = –133,07 (I квартал);

S2 = 177,96 (II квартал);

S3 = 187,08 (III квартал);

S4 = –231,97 (IV квартал).

Таким образом:

;

;

;

.

F = 1254,54 + 1567,65 + 1575,7 + 1152,43 = 5550,32.

7.3. Исходные данные

 

Необходимо рассчитать тренд и спрогнозировать количество перевезенных пассажиров филиалом ОАО «ФПК» на основе наблюдений в течение 10 лет и сделать выводы по результатам табл. 7.5.

Таблица 7.5







Дата добавления: 2015-08-31; просмотров: 594. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Примеры решения типовых задач. Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2   Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2. Найдите константу диссоциации кислоты и значение рК. Решение. Подставим данные задачи в уравнение закона разбавления К = a2См/(1 –a) =...

Экспертная оценка как метод психологического исследования Экспертная оценка – диагностический метод измерения, с помощью которого качественные особенности психических явлений получают свое числовое выражение в форме количественных оценок...

В теории государства и права выделяют два пути возникновения государства: восточный и западный Восточный путь возникновения государства представляет собой плавный переход, перерастание первобытного общества в государство...

Типовые ситуационные задачи. Задача 1. Больной К., 38 лет, шахтер по профессии, во время планового медицинского осмотра предъявил жалобы на появление одышки при значительной физической   Задача 1. Больной К., 38 лет, шахтер по профессии, во время планового медицинского осмотра предъявил жалобы на появление одышки при значительной физической нагрузке. Из медицинской книжки установлено, что он страдает врожденным пороком сердца....

Типовые ситуационные задачи. Задача 1.У больного А., 20 лет, с детства отмечается повышенное АД, уровень которого в настоящее время составляет 180-200/110-120 мм рт Задача 1.У больного А., 20 лет, с детства отмечается повышенное АД, уровень которого в настоящее время составляет 180-200/110-120 мм рт. ст. Влияние психоэмоциональных факторов отсутствует. Колебаний АД практически нет. Головной боли нет. Нормализовать...

Эндоскопическая диагностика язвенной болезни желудка, гастрита, опухоли Хронический гастрит - понятие клинико-анатомическое, характеризующееся определенными патоморфологическими изменениями слизистой оболочки желудка - неспецифическим воспалительным процессом...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия