Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

ОДНОМЕРНЫЕ ВРЕМЕННЫЕ РЯДЫ





 

7.1. Постановка задачи. Основные элементы временного ряда

 

Эконометрическую модель можно построить, используя два типа исходных данных:

● данные, характеризующие совокупность различных объек­тов в определенный момент (период) времени;

● данные, характеризующие один объект за ряд последова­тельных моментов (периодов) времени.

Модели, построенные по данным первого типа, называются пространственными моделями. Модели, построенные по данным второго типа, называются моделями временных рядов.

Временной ряд – это совокупность значений какого-либо показателя за несколько последовательных моментов (периодов) времени. Каждый уровень временного ряда формируется под воздействием большого числа факторов, которые условно можно подразделить на три группы:

– факторы, формирующие тенденцию ряда;

– факторы, формирующие циклические колебания ряда;

– случайные факторы.

При различных сочетаниях этих факторов зависимость уровней ряда от времени может принимать разные формы. Во-первых, большинство временных рядов экономических показателей имеют тенденцию, характеризующую совокупное долговременное воздействие множества факторов на динамику изучаемого показателя. Эти факторы, взятые в отдельности, могут оказывать разнонаправленное воздействие на исследуемый показатель, но в совокупности они формируют его возрастающую или убывающую тенденцию (рис. 7.1).

Во-вторых, изучаемый показатель может быть подвержен циклическим колебаниям. Эти колебания могут носить сезонный характер, поскольку экономическая деятельность ряда отраслей зависит от времени года (например, цены на сельскохозяйственную продукцию в летний период ниже, чем в зимний; уровень безработицы в курортных городах в зимний период выше по сравнению с летним, спрос на перевозку пассажиров летом возрастает и др.). При наличии больших массивов данных в течение длительных промежутков времени можно выявить циклические колебания, связанные с общей динамикой конъюнктуры рынка, а также с фазой бизнес-цикла, в которой находится экономика страны (см. рис. 7.1).

Очевидно, что реальные данные не соответствуют полностью одной из описанных выше моделей. Чаще всего они содержат три компоненты: тенденцию, сезонные колебания и случайную. В большинстве случаев фактический уровень временного ряда можно представить как сумму или произведение трендовой, циклической и случайной компонент. Модель, в которой временной ряд представлен как сумма перечисленных компонент, называется аддитивной моделью временного ряда.

 

в
 
 
 
а
б

 

Рис. 7.1. Основные компоненты временного ряда: а – возрастающая тенденция; б – сезонная компонента; в – случайная компонента

 

Основная задача эконометрического исследования отдель­ного временного ряда – выявление и придание количественного выражения каждой из перечисленных выше компонент, с тем чтобы использовать полученную информацию для прогнозиро­вания будущих значений ряда или при построении моделей взаи­мосвязи двух или более временных рядов.

Одним из наиболее распространенных способов моделирования тенденции временного ряда является построение аналитической функции, характеризующей зависимость уровней ряда от времени, или тренда. Этот способ называют аналитическим вы­равниванием временного ряда.

В связи с тем что зависимость от времени может принимать разные формы, для ее формализации можно использовать различные виды функций. Для построения трендов чаще всего применяются следующие функции:

· линейный тренд yt = а + b ∙ t;

· логарифмический тренд ;

· экспоненциальный тренд ;

· тренд в форме степенной функции yt = a ∙ tb;

· парабола второго и более высоких порядков .

Параметры каждого из перечисленных выше трендов можно определить обычным методом наименьших квадратов, используя в качестве независимой переменной время t = 1,2,..., n, а в качестве зависимой перемен­ной – фактические уровни временного ряда у. Для нелинейных трендов предварительно проводят стандартную процедуру их линеаризации.

Известно несколько способов определения типа тенденции. К наиболее распространенным относятся качественный анализ изучаемого процесса, построение и визуальный анализ графика зависимости уровней ряда от времени, расчет некоторых основ­ных показателей динамики.

Выбор наилучшего уравнения в случае, если ряд содержит нелинейную тенденцию, можно осуществить путем перебора ос­новных форм тренда, расчета по каждому уравнению скорректи­рованного коэффициента детерминации и выбора уравнения тренда с максимальным его значением. Реализация этого метода относительно проста при компьютерной обработке данных.

Известно несколько подходов к анализу структуры временных рядов, содержащих сезонные или циклические колебания.

Простейший подход – расчет значений сезонного компонента методом скользящей средней и построение аддитивной модели временного ряда. Общий вид аддитивной модели следующий:

 

Y = T + S + E, (7.1)

 

где Т – тренд; S – сезонная компонента; Е – случайная компонента.

Данная модель предполагает, что каждый уровень временного ряда может быть представлен как произведение трендовой Т, сезонной S и случайной Е компонент. Выбор одной из двух моделей проводится на основе анализа структуры сезонных колебаний. Если амплитуда колебаний приблизительно постоянна, строят аддитивную модель временного ряда, в которой значения сезонной компоненты предполагаются постоянными для различных циклов.

Построение аддитивной модели сводится к расчету значений T, S и E для каждого уровня ряда. Процесс построения модели включает в себя следующие шаги.

Шаг 1. Выравнивание исходного ряда методом скользящей средней.

Шаг 2. Расчет значений сезонной компоненты S.

Шаг 3. Устранение сезонной компоненты и исходных уров­ней ряда и получение выровненных данных (Т + Е) в аддитивной или (Т ∙ Е) в мультипликативной модели.

Шаг 4. Аналитическое выравнивание уровней (Т + Е) или (Т ∙ Е) и расчет значений Т с использованием полученного урав­нения тренда.

Шаг 5. Расчет полученных по модели значений (Т + S) или (T ∙ S).

Шаг 6. Расчет абсолютных и/или относительных ошибок.

Если полученные значения ошибок не содержат автокорреля­ции, ими можно заменить исходные уровни ряда и в дальнейшем использовать временной ряд ошибок Е для анализа взаимосвязи исходного ряда и других временных рядов.

 

7.2. Последовательность решения задачи

 

Обратимся к данным по динамике количества перевезенных пассажиров Дальневосточного филиала ОАО «ФПК» за последние четыре года (табл. 7.1).

Таблица 7.1







Дата добавления: 2015-08-31; просмотров: 2269. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Классификация ИС по признаку структурированности задач Так как основное назначение ИС – автоматизировать информационные процессы для решения определенных задач, то одна из основных классификаций – это классификация ИС по степени структурированности задач...

Внешняя политика России 1894- 1917 гг. Внешнюю политику Николая II и первый период его царствования определяли, по меньшей мере три важных фактора...

Оценка качества Анализ документации. Имеющийся рецепт, паспорт письменного контроля и номер лекарственной формы соответствуют друг другу. Ингредиенты совместимы, расчеты сделаны верно, паспорт письменного контроля выписан верно. Правильность упаковки и оформления....

Тема 2: Анатомо-топографическое строение полостей зубов верхней и нижней челюстей. Полость зуба — это сложная система разветвлений, имеющая разнообразную конфигурацию...

Виды и жанры театрализованных представлений   Проживание бронируется и оплачивается слушателями самостоятельно...

Что происходит при встрече с близнецовым пламенем   Если встреча с родственной душой может произойти достаточно спокойно – то встреча с близнецовым пламенем всегда подобна вспышке...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия