Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Условия равновесия жидкости в сообщающихся сосудах





Рассмотрим два сообщающихся сосуда, наполненных различными, не смачивающимися между собой жидкостями (рис. 2.6).

Сосуды закрыты, давления и – на поверхности жидкостей в сосудах I и II различны. Линия О-О – линия раздела разнородных жидкостей. Горизонтальная плоскость, проходящая через линию О-О, является плоскостью равного давления. Определим величину гидростатического давления в точках и , лежащих на плоскости равного давления. Согласно основному уравнению гидростатики:

(2.30)

(2.31)

где и – возвышение поверхности жидкостей в сосудах I и II над плоскостью О-О; и – плотности жидкостей.

Очевидно, что:

(2.32)

(2.33)

Зависимость (2.33) характеризует условия равновесия жидкостей в сообщающихся сосудах. Она позволяет решать частные задачи.

Случай I. В сосудах налита одинаковая жидкость, но давления и различны.

тогда при условии, что получим:

(2.34)

Случай II. Жидкость одинакова, т.е. и . Тогда:

(2.35)

жидкость в сосудах будет на одном уровне.

Случай III. Жидкость одинакова , но один сосуд открыт , а другой закрыт .Тогда:

(2.36)

(2.37)

так как , значит

(2.38)

(2.39)

Выражение есть пьезометрическая высота для точек, лежащих на поверхности жидкости в закрытом сосуде.

Случай IV. Жидкости разнородные, несмешивающиеся, а Тогда:

(2.40)

или

(2.41)

Рассмотрим закрытый сосуд с жидкостью, к которому в точках А и В на произвольной глубине присоединены пьезометры I и II (рис. 2.7).

Давление на свободной поверхности в сосуде больше атмосферного . Трубка I сверху открыта и давление на свободной поверхности в ней равно атмосферному . Трубка II сверху запаяна, из нее удален воздух, т.е. давление в ней равно нулю .

Для определения вертикальных координат точек А и В проведем на произвольной высоте горизонтальную плоскость 0-0. Эта плоскость называется плоскостью сравнения. Вертикальное расстояние от плоскости сравнения до рассматриваемой точки называется геометрической высотой точки по отношению к плоскости сравнения и обозначается буквой . За плоскость сравнения может быть принят уровень земли, пола.

Так как давление в сосуде на свободной поверхности жидкости больше атмосферного, то в пьезометрических трубках I и II жидкость поднимется на большую высоту, чем уровень жидкости в сосуде. Обозначим высоту поднятия жидкости в открытом пьезометре через
– пьезометрическая высота, а высоту поднятия жидкости в закрытом пьезометре через – приведенная высота.

Пьезометрическая высота – мера манометрического давления в точке А. Приведенная высота – мера абсолютного давления в точке В. Разность высот , равна высоте столба жидкости, соответствующей атмосферному давлению т.е. 10 м.в.ст.

Сумма геометрической высоты и пьезометрической для любой точки жидкости будет величиной постоянной и называется пьезометрическим напором:

. (2.42)

Но

. (2.43)

Подставив это выражение в формулу (2.42) получим

(2..44)

или

(2.45)

это сумма приведенной высоты и геометрической высоты положения, называемая гидростатическим напором .

Тогда:

(2.46)

В уравнении (2.46) для любой точки жидкости, а не зависит от положения точки.

Значит:

(2.47)

Поэтому, сколько бы мы пьезометров не подключили, во всех пьезометрах жидкость установится на одном уровне: плоскость, соответствующая уровню П–П, называется пьезометрической плоскостью, а уровню Н–Н – напорной плоскостью.

Пьезометрический напор является мерой удельной потенциальной энергии жидкости. Предположим, что вес частицы жидкости в точке А. равен (рис. 2.7). По отношении к плоскости сравнения О – О запас потенциальной энергии положения равен , где -.высота от плоскости О – О до точки А. Под действием избыточного гидростатического давления частица, находящаяся на глубине , может подняться на высоту ,то есть она обладает потенциальной энергией давления равной . Полная потенциальная энергия частицы жидкости весом равна .Удельная потенциальная энергия, т.е. энергия приходящаяся на единицу веса частицы будет соответственно равна:

(2.48)

Аналогично, гидростатический напор является также мерой удельной потенциальной энергии жидкости, но большей по сравнению на величину удельной потенциальной энергии атмосферного давления.

(2.49)







Дата добавления: 2015-09-15; просмотров: 1278. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Задержки и неисправности пистолета Макарова 1.Что может произойти при стрельбе из пистолета, если загрязнятся пазы на рамке...

Вопрос. Отличие деятельности человека от поведения животных главные отличия деятельности человека от активности животных сводятся к следующему: 1...

Расчет концентрации титрованных растворов с помощью поправочного коэффициента При выполнении серийных анализов ГОСТ или ведомственная инструкция обычно предусматривают применение раствора заданной концентрации или заданного титра...

Условия приобретения статуса индивидуального предпринимателя. В соответствии с п. 1 ст. 23 ГК РФ гражданин вправе заниматься предпринимательской деятельностью без образования юридического лица с момента государственной регистрации в качестве индивидуального предпринимателя. Каковы же условия такой регистрации и...

Седалищно-прямокишечная ямка Седалищно-прямокишечная (анальная) ямка, fossa ischiorectalis (ischioanalis) – это парное углубление в области промежности, находящееся по бокам от конечного отдела прямой кишки и седалищных бугров, заполненное жировой клетчаткой, сосудами, нервами и...

Основные структурные физиотерапевтические подразделения Физиотерапевтическое подразделение является одним из структурных подразделений лечебно-профилактического учреждения, которое предназначено для оказания физиотерапевтической помощи...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия