Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Методы Рунге-Кутта





При использовании методов Рунге-Кутта для решения уравнения на каждом шаге приращения аргумента вычисляются значения функции f(x,y) в нескольких точках. Последовательно находятся:

,

..............., (8.25)

.

Значение неизвестной функции в новой точке вычисляется по формуле:

.

Простейшим примером является второй модифицированный метод Эйлера, который может быть описан следующей последовательностью формул:

,

,

.

Для построения метода Рунге-Кутта требуемого порядка нужно найти коэффициенты .

Обозначим: u(x) – точное решение, проходящее через точку (x, y(x)).

Тогда равно локальной погрешности метода. Если f(x,y) – достаточно гладкая функция своих аргументов, то все ki(h), i=1,..,q и – гладкие функции параметра h. Предположим, что

, (8.26)

если f(x,y) – произвольная достаточно гладкая функция, и найдется такая гладкая функция f(x,y), что . Тогда по формуле Тейлора

.

Итак, если выполнены соотношения (8.26), то метод имеет порядок p. Следовательно, чтобы построить метод порядка p, нужно найти такие коэффициенты , при которых выполняются соотношения (8.26). Это трудоемкая задача. Выведем в системе Mathematica список первых трех производных от функции, стоящей в правой части дифференциального уравнения. Для упрощения выражений – раскрытия скобок и приведения подобных членов – используем функцию Expand. Команда в системе Mathematica:

In[]:= y'[x_]=f[x, y[x]]; Table[{k," ", D[f[x, y[x]], {x, k}]//Expand}, {k, 1, 3}]


Полученный список производных:

Для получения метода третьего порядка необходимо взять q=3. Получается система из шести уравнений с восемью неизвестными. Наиболее употребительная совокупность формул для метода третьего порядка:

(8.27)

Можно усмотреть здесь аналогию с квадратурной формулой Симпсона.

Наиболее употребительный вариант метода Рунге-Кутта четвертого порядка может быть описан последовательностью формул:

(8.28)

В системе Mathcad встроенная функция, реализующая метод Рунге-Кутта четвертого порядка, для решения системы из n уравнений, вызывается командой: rkfixed(y, x1, x2, npoints, D). Аргументы функции:

· y – вектор, содержащий n начальных условий,

· x1, x2 – начальная и конечная точки отрезка интегрирования,

· npoints – количество точек, в которых вычисляется приближенное решение,

· D – вектор, размерности n, содержащий правые части системы уравнений.

В случае одного уравнения y и D – скалярные величины.

Функция rkfixed применяется также для решения уравнения n-го порядка, которое может быть нелинейным относительно старшей производной. В этом случае уравнение предварительно преобразуется к системе уравнений первого порядка.

Функция rkfixed возвращает матрицу, в которой первый столбец содержит значения независимой переменной, а остальные столбцы содержат найденные значения неизвестных функций. Количество строк возвращаемой матрицы равно npoints+1.

Пример 8.9. Сравним погрешности решения начальной задачи тремя методами: простым и модифицированным методами Эйлера, а также методом Рунге-Кутта. Решение в среде Mathcad приведено на рис. 8.6. Точное решение задачи представляет собой экспоненциальную функцию .

На отрезке задаем равномерную сетку значений аргумента с шагом . Последовательность включает решение обычным методом Эйлера. Решение первым модифицированным методом Эйлера представляет последовательность . На левом графике показаны эти два решения и точное решение .

Решение методом Рунге-Кутта находим с помощью встроенной функции rkfixed. Аргументы функции:

1 – значение y в начальной точке;

0, 2 – отрезок интегрирования уравнения;

N – количество узлов сетки;

D – функция, описывающая правую часть дифференциального уравнения, D(t, y)=y.

Решение методом Рунге-Кутта и точное решение показаны на правом рисунке.

Формируем матрицу погрешностей Err. Первый столбец матрицы включает значения . Второй столбец содержит погрешности решения модифицированным методом Эйлера, третий – погрешности решения методом Рунге-Кутта. Приведенные цифры наглядно демонстрируют преимущества метода четвертого порядка.







Дата добавления: 2015-09-18; просмотров: 779. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Условия приобретения статуса индивидуального предпринимателя. В соответствии с п. 1 ст. 23 ГК РФ гражданин вправе заниматься предпринимательской деятельностью без образования юридического лица с момента государственной регистрации в качестве индивидуального предпринимателя. Каковы же условия такой регистрации и...

Седалищно-прямокишечная ямка Седалищно-прямокишечная (анальная) ямка, fossa ischiorectalis (ischioanalis) – это парное углубление в области промежности, находящееся по бокам от конечного отдела прямой кишки и седалищных бугров, заполненное жировой клетчаткой, сосудами, нервами и...

Основные структурные физиотерапевтические подразделения Физиотерапевтическое подразделение является одним из структурных подразделений лечебно-профилактического учреждения, которое предназначено для оказания физиотерапевтической помощи...

Влияние первой русской революции 1905-1907 гг. на Казахстан. Революция в России (1905-1907 гг.), дала первый толчок политическому пробуждению трудящихся Казахстана, развитию национально-освободительного рабочего движения против гнета. В Казахстане, находившемся далеко от политических центров Российской империи...

Виды сухожильных швов После выделения культи сухожилия и эвакуации гематомы приступают к восстановлению целостности сухожилия...

КОНСТРУКЦИЯ КОЛЕСНОЙ ПАРЫ ВАГОНА Тип колёсной пары определяется типом оси и диаметром колес. Согласно ГОСТ 4835-2006* устанавливаются типы колесных пар для грузовых вагонов с осями РУ1Ш и РВ2Ш и колесами диаметром по кругу катания 957 мм. Номинальный диаметр колеса – 950 мм...

Studopedia.info - Студопедия - 2014-2026 год . (0.009 сек.) русская версия | украинская версия