Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Модифицированные методы Эйлера





Представим точное решение дифференциального уравнения , проходящее через точку , в виде ряда Тейлора:

(8.17)

Запишем приближенное решение в виде:

(8.18)

Подберем такую функцию Ф, чтобы было равно сумме первых трех слагаемых в формуле (8.17). Будем искать функцию Ф в виде:

,

где – пока неизвестные коэффициенты.

Разложим функцию Ф в ряд по степеням h:

(8.19)

где по-прежнему .

Из сравнения (8.17) и (8.19) с учетом (8.18) следует, что коэффициенты должны удовлетворять соотношениям:

(8.20)

1) Положив , т.е. , получим первый модифицированный метод Эйлера:

(8.21)

Произведение, стоящее в правой части формулы (8.21), имеет вид формулы прямоугольников для вычисления интегралов (см. рис. 8.2). Отличие от квадратурной формулы прямоугольников состоит в том, что нам неизвестно точное значение функции f в середине отрезка интегрирования .

2) Положив , т.е. , получим второй модифицированный метод Эйлера:

(8.22)

Произведение, стоящее в правой части формулы (8.22), похоже на квадратурную формулу трапеций. Отличие от формулы трапеций состоит в том, что нам неизвестно точное значение функции f в точке .

 

Пример 8.6. Найдем решение начальной задачи:

, –

двумя методами: методом Эйлера и вторым модифицированным методом Эйлера. Проведем только один шаг решения, т.е. найдем . Сравним результаты вычислений с точным решением.

Точное решение легко может быть найдено аналитически, либо может быть найдено в среде Mathematica выполнением команды:

In[]:= DSolve[ {y'[x]==x+y[x], y[1]==1}, y[x], x]//Expand

Точное решение равно: и .

Решение методом Эйлера: .

Решение вторым модифицированным методом Эйлера:

.

Видим, что решение модифицированным методом ближе к точному решению.

Пример 8.7. Найдем решение начальной задачи:

.

В примере 8.2 эта задача решена методом Эйлера. Получены значения: . Точное решение этой задачи равно:

Найдем теперь решение первым модифицированным методом. Проведем только один шаг решения, т.е. найдем .

.

.

Видим, что решение модифицированным методом существенно точнее, чем решение простым методом Эйлера.

 







Дата добавления: 2015-09-18; просмотров: 544. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

ОЧАГОВЫЕ ТЕНИ В ЛЕГКОМ Очаговыми легочными инфильтратами проявляют себя различные по этиологии заболевания, в основе которых лежит бронхо-нодулярный процесс, который при рентгенологическом исследовании дает очагового характера тень, размерами не более 1 см в диаметре...

Примеры решения типовых задач. Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2   Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2. Найдите константу диссоциации кислоты и значение рК. Решение. Подставим данные задачи в уравнение закона разбавления К = a2См/(1 –a) =...

Экспертная оценка как метод психологического исследования Экспертная оценка – диагностический метод измерения, с помощью которого качественные особенности психических явлений получают свое числовое выражение в форме количественных оценок...

Что такое пропорции? Это соотношение частей целого между собой. Что может являться частями в образе или в луке...

Растягивание костей и хрящей. Данные способы применимы в случае закрытых зон роста. Врачи-хирурги выяснили...

ФАКТОРЫ, ВЛИЯЮЩИЕ НА ИЗНОС ДЕТАЛЕЙ, И МЕТОДЫ СНИЖЕНИИ СКОРОСТИ ИЗНАШИВАНИЯ Кроме названных причин разрушений и износов, знание которых можно использовать в системе технического обслуживания и ремонта машин для повышения их долговечности, немаловажное значение имеют знания о причинах разрушения деталей в результате старения...

Studopedia.info - Студопедия - 2014-2025 год . (0.014 сек.) русская версия | украинская версия