Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Модифицированные методы Эйлера





Представим точное решение дифференциального уравнения , проходящее через точку , в виде ряда Тейлора:

(8.17)

Запишем приближенное решение в виде:

(8.18)

Подберем такую функцию Ф, чтобы было равно сумме первых трех слагаемых в формуле (8.17). Будем искать функцию Ф в виде:

,

где – пока неизвестные коэффициенты.

Разложим функцию Ф в ряд по степеням h:

(8.19)

где по-прежнему .

Из сравнения (8.17) и (8.19) с учетом (8.18) следует, что коэффициенты должны удовлетворять соотношениям:

(8.20)

1) Положив , т.е. , получим первый модифицированный метод Эйлера:

(8.21)

Произведение, стоящее в правой части формулы (8.21), имеет вид формулы прямоугольников для вычисления интегралов (см. рис. 8.2). Отличие от квадратурной формулы прямоугольников состоит в том, что нам неизвестно точное значение функции f в середине отрезка интегрирования .

2) Положив , т.е. , получим второй модифицированный метод Эйлера:

(8.22)

Произведение, стоящее в правой части формулы (8.22), похоже на квадратурную формулу трапеций. Отличие от формулы трапеций состоит в том, что нам неизвестно точное значение функции f в точке .

 

Пример 8.6. Найдем решение начальной задачи:

, –

двумя методами: методом Эйлера и вторым модифицированным методом Эйлера. Проведем только один шаг решения, т.е. найдем . Сравним результаты вычислений с точным решением.

Точное решение легко может быть найдено аналитически, либо может быть найдено в среде Mathematica выполнением команды:

In[]:= DSolve[ {y'[x]==x+y[x], y[1]==1}, y[x], x]//Expand

Точное решение равно: и .

Решение методом Эйлера: .

Решение вторым модифицированным методом Эйлера:

.

Видим, что решение модифицированным методом ближе к точному решению.

Пример 8.7. Найдем решение начальной задачи:

.

В примере 8.2 эта задача решена методом Эйлера. Получены значения: . Точное решение этой задачи равно:

Найдем теперь решение первым модифицированным методом. Проведем только один шаг решения, т.е. найдем .

.

.

Видим, что решение модифицированным методом существенно точнее, чем решение простым методом Эйлера.

 







Дата добавления: 2015-09-18; просмотров: 544. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

ТЕРМОДИНАМИКА БИОЛОГИЧЕСКИХ СИСТЕМ. 1. Особенности термодинамического метода изучения биологических систем. Основные понятия термодинамики. Термодинамикой называется раздел физики...

Травматическая окклюзия и ее клинические признаки При пародонтите и парадонтозе резистентность тканей пародонта падает...

Подкожное введение сывороток по методу Безредки. С целью предупреждения развития анафилактического шока и других аллергических реак­ций при введении иммунных сывороток используют метод Безредки для определения реакции больного на введение сыворотки...

Анализ микросреды предприятия Анализ микросреды направлен на анализ состояния тех со­ставляющих внешней среды, с которыми предприятие нахо­дится в непосредственном взаимодействии...

Типы конфликтных личностей (Дж. Скотт) Дж. Г. Скотт опирается на типологию Р. М. Брансом, но дополняет её. Они убеждены в своей абсолютной правоте и хотят, чтобы...

Гносеологический оптимизм, скептицизм, агностицизм.разновидности агностицизма Позицию Агностицизм защищает и критический реализм. Один из главных представителей этого направления...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия