Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Тригонометрическая и показательная форма комплексного числа





В данном параграфе больше речь пойдет о тригонометрической форме комплексного числа. Показательная форма в практических заданиях встречается значительно реже. Рекомендую закачать и по возможности распечатать тригонометрические таблицы. Без таблиц далеко не уехать.

Любое комплексное число (кроме нуля) можно записать в тригонометрической форме:
,

где – это модуль комплексного числа, а аргумент комплексного числа.

Изобразим на комплексной плоскости число . Для определённости и простоты объяснений расположим его в первой координатной четверти, т.е. считаем, что :

 

Модулем комплексного числа называется расстояние от начала координат до соответствующей точки комплексной плоскости. Попросту говоря, модуль – это длина радиус-вектора, который на чертеже обозначен красным цветом.

Модуль комплексного числа стандартно обозначают: или

По теореме Пифагора легко вывести формулу для нахождения модуля комплексного числа: .

Данная формула справедлива для любых значений «a» и «b».

 

Аргументом комплексного числа называется угол между положительной полуосью действительной оси и радиус-вектором, проведенным из начала координат к соответствующей точке. Аргумент не определён для единственного числа: .

Аргумент комплексного числа стандартно обозначают: или

Из геометрических соображений получается следующая формула для нахождения аргумента: .

Внимание! Данная формула работает только в правой полуплоскости! Если комплексное число располагается не в 1-ой и не 4-ой координатной четверти, то формула будет немного другой. Эти случаи мы тоже разберем.

Но сначала рассмотрим простейшие примеры, когда комплексные числа располагаются на координатных осях.

Пример 7

Представить в тригонометрической форме комплексные числа: , , , . Выполним чертёж:

На самом деле задание устное. Для наглядности перепишим тригонометрическую форму комплексного числа:

Запомним, модуль – длина (которая всегда неотрицательна), аргумент – угол.

1) Представим в тригонометрической форме число . Найдем его модуль и аргумент. Очевидно, что . Формальный расчет по формуле: Очевидно, что (число лежит непосредственно на действительной положительной полуоси). Таким образом, число в тригонометрической форме:

.

Рассмотрим обратное проверочное действие:

2) Представим в тригонометрической форме число . Найдем его модуль и аргумент. Очевидно, что . Формальный расчет по формуле: .

Очевидно, что (или 90 градусов). На чертеже угол обозначен красным цветом. Таким образом, число в тригонометрической форме: .

 

Используя таблицу значений тригонометрических функций, легко обратно получить алгебраическую форму числа (заодно выполнив проверку):

3) Представим в тригонометрической форме число . Найдем его модуль и аргумент. Очевидно, что . Формальный расчет по формуле: .

Очевидно, что (или 180 градусов). На чертеже угол обозначен синим цветом. Таким образом, число в тригонометрической форме: .

Проверка:

4) И четвёртый интересный случай. Представим в тригонометрической форме число . Найдем его модуль и аргумент. Очевидно, что . Формальный расчет по формуле: .

Аргумент можно записать двумя способами: Первый способ: (270 градусов), и, соответственно:

.

Проверка:

Однако более стандартно следующее правило: Если угол больше 180 градусов, то его записывают со знаком минус и противоположной ориентацией («прокруткой») угла: (минус 90 градусов), на чертеже угол отмечен зеленым цветом. Легко заметить, что и – это один и тот же угол.

Таким образом, запись принимает вид:

Внимание! Ни в коем случае нельзя использовать четность косинуса, нечетность синуса и проводить дальнейшее «упрощение» записи:

Кстати, полезно вспомнить внешний вид и свойства тригонометрических и обратных тригонометрических функций. И комплексные числа усвоятся заметно легче!

Перейдем к рассмотрению более распространенных случаев. Как было уже отмечено, с модулем проблем не возникает, всегда следует использовать формулу . А вот формулы для нахождения аргумента будут разными, это зависит от того, в какой координатной четверти лежит число . При этом возможны три варианта (их полезно переписать к себе в тетрадь):

1) Если (1-ая и 4-ая координатные четверти, или правая полуплоскость), то аргумент нужно находить по формуле:

.

2) Если (2-ая координатная четверть), то аргумент нужно находить по формуле:

.

3) Если (3-я координатная четверть), то аргумент нужно находить по формуле:

.

Пример 8

Представить в тригонометрической форме комплексные числа: , , , .

Если предложено задание представить число в тригонометрической форме, то необходимо чертёж выполнить.

Представим в тригонометрической форме число . Найдем его модуль и аргумент.

Поскольку (случай 2), то

– вот здесь нечетностью арктангенса воспользоваться нужно. К сожалению, в таблице отсутствует значение , поэтому в подобных случаях аргумент приходится оставлять в громоздком виде: – число в тригонометрической форме.

 

Представим в тригонометрической форме число . Найдем его модуль и аргумент.

Поскольку (случай 1), то

(минус 60 градусов).

Таким образом:

– число в тригонометрической форме.

А вот здесь, как уже отмечалось, минусы не трогаем.

Кроме забавного графического метода проверки, существует и проверка аналитическая, которая уже проводилась в Примере 7. Используем таблицу значений тригонометрических функций, при этом учитываем, что угол – это в точности табличный угол (или 300 градусов): – число в исходной алгебраической форме.

Числа и представьте в тригонометрической форме самостоятельно.

 

Любое комплексное число (кроме нуля) можно записать в показательной форме: , где – это модуль комплексного числа, а – аргумент комплексного числа.

Что нужно сделать, чтобы представить комплексное число в показательной форме? Почти то же самое: выполнить чертеж, найти модуль и аргумент. И записать число в виде .

Например, для числа предыдущего примера у нас найден модуль и аргумент: , . Тогда данное число в показательной форме запишется следующим образом: .

Число в показательной форме будет выглядеть так:

Число – так:

Единственный совет – не трогаем показатель экспоненты, там не нужно переставлять множители, раскрывать скобки и т.п. Комплексное число в показательной форме записывается строго по форме .

 







Дата добавления: 2015-09-18; просмотров: 1087. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Методика исследования периферических лимфатических узлов. Исследование периферических лимфатических узлов производится с помощью осмотра и пальпации...

Роль органов чувств в ориентировке слепых Процесс ориентации протекает на основе совместной, интегративной деятельности сохранных анализаторов, каждый из которых при определенных объективных условиях может выступать как ведущий...

Лечебно-охранительный режим, его элементы и значение.   Терапевтическое воздействие на пациента подразумевает не только использование всех видов лечения, но и применение лечебно-охранительного режима – соблюдение условий поведения, способствующих выздоровлению...

Факторы, влияющие на степень электролитической диссоциации Степень диссоциации зависит от природы электролита и растворителя, концентрации раствора, температуры, присутствия одноименного иона и других факторов...

Йодометрия. Характеристика метода Метод йодометрии основан на ОВ-реакциях, связанных с превращением I2 в ионы I- и обратно...

Броматометрия и бромометрия Броматометрический метод основан на окислении вос­становителей броматом калия в кислой среде...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия