Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Как извлечь корень из произвольного комплексного числа?





Рассмотрим уравнение , или, то же самое: . Здесь «эн» может принимать любое натуральное значение, которое больше единицы. В частности, при получается квадратный корень

Уравнение вида имеет ровно корней , которые можно найти по формуле:

,

где – это модуль комплексного числа , – его аргумент, а параметр принимает значения от 0 до (n-1):

Пример 16

Найти корни уравнения

Перепишем уравнение в виде

В данном примере , , поэтому уравнение будет иметь два корня: и . Общую формулу можно сразу немножко детализировать:

,

Теперь нужно найти модуль и аргумент комплексного числа :

Число располагается в первой четверти, поэтому:


Напоминаю, что при нахождении тригонометрической формы комплексного числа всегда желательно сделать чертеж.

Еще более детализируем формулу:

,

Подставляя в формулу значение , получаем первый корень:

Подставляя в формулу значение , получаем второй корень:

Ответ:

,

При желании или требовании задания, полученные корни можно перевести обратно в алгебраическую форму.

И напоследок рассмотрим задание - «хит», в контрольных работах почти всегда для решения предлагается уравнение третьей степени: .

Пример 17

Найти корни уравнения , где

Сначала представим уравнение в виде :

Если , тогда

Обозначим привычной формульной буквой: .
Таким образом, требуется найти корни уравнения

В данном примере , а значит, уравнение имеет ровно три корня: , ,
Детализирую общую формулу:
,

Найдем модуль и аргумент комплексного числа :

Число располагается во второй четверти, поэтому:

Еще раз детализирую формулу:
,
Корень удобно сразу же упростить:

Подставляем в формулу значение и получаем первый корень:

Подставляем в формулу значение и получаем второй корень:

Подставляем в формулу значение и получаем третий корень:

Очень часто полученные корни требуется изобразить геометрически:
Как выполнить чертеж? Сначала на калькуляторе находим, чему равен модуль корней и чертим циркулем окружность данного радиуса. Все корни будут располагаться на данной окружности.

Теперь берем аргумент первого корня и выясняем, чему равняется угол в градусах: . Отмеряем транспортиром и ставим на чертеже точку .

Берем аргумент второго корня и переводим его в градусы: . Отмеряем транспортиром и ставим на чертеже точку .

По такому же алгоритму строится точка

Легко заметить, что корни расположены геометрически правильно с интервалом между радиус-векторами. Чертеж крайне желательно выполнять с помощью транспортира.

 

 

Решения и ответы примеров, данных на самостоятельное рассмотрение:

Пример 6

Решение:



Пример 8:

Решение:

Представим в тригонометрической форме число .

Найдем его модуль и аргумент.

.

Поскольку (случай 1), то

.

Таким образом:

– число в тригонометрической форме.

Представим в тригонометрической форме число .

Найдем его модуль и аргумент.

.

Поскольку (случай 3), то

.

Таким образом:

– число в тригонометрической форме.

 

Пример 11: Решение:

Представим число в тригонометрической форме:

(это число Примера 8). Используем формулу Муавра :

Пример 13: Решение:


Пример 15: Решение:



,
Разложим квадратный двучлен на множители:

 







Дата добавления: 2015-09-18; просмотров: 476. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Неисправности автосцепки, с которыми запрещается постановка вагонов в поезд. Причины саморасцепов ЗАПРЕЩАЕТСЯ: постановка в поезда и следование в них вагонов, у которых автосцепное устройство имеет хотя бы одну из следующих неисправностей: - трещину в корпусе автосцепки, излом деталей механизма...

Понятие метода в психологии. Классификация методов психологии и их характеристика Метод – это путь, способ познания, посредством которого познается предмет науки (С...

ЛЕКАРСТВЕННЫЕ ФОРМЫ ДЛЯ ИНЪЕКЦИЙ К лекарственным формам для инъекций относятся водные, спиртовые и масляные растворы, суспензии, эмульсии, ново­галеновые препараты, жидкие органопрепараты и жидкие экс­тракты, а также порошки и таблетки для имплантации...

Различия в философии античности, средневековья и Возрождения ♦Венцом античной философии было: Единое Благо, Мировой Ум, Мировая Душа, Космос...

Характерные черты немецкой классической философии 1. Особое понимание роли философии в истории человечества, в развитии мировой культуры. Классические немецкие философы полагали, что философия призвана быть критической совестью культуры, «душой» культуры. 2. Исследовались не только человеческая...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия