Деление комплексных чисел
Пример 4 Даны комплексные числа , . Составим частное: Деление чисел осуществляется методом умножения знаменателя и числителя на сопряженное знаменателю выражение. Вспоминаем бородатую формулу и смотрим на наш знаменатель: . В знаменателе уже есть , поэтому сопряженным выражением в данном случае является , то есть Согласно правилу, знаменатель нужно умножить на , и, чтобы ничего не изменилось, домножить числитель на то же самое число : Далее в числителе нужно раскрыть скобки (перемножить два числа по правилу, рассмотренному в предыдущем пункте). А в знаменателе воспользоваться формулой (помним, что и не путаемся в знаках!!!): В ряде случаев перед делением дробь целесообразно упростить, например, рассмотрим частное чисел: . Перед делением избавляемся от лишних минусов: в числителе и в знаменателе выносим минусы за скобки и сокращаем эти минусы: . Для любителей порешать приведу правильный ответ: Редко, но встречается такое задание: Пример 5 Дано комплексное число . Записать данное число в алгебраической форме (т.е. в форме ). Приём тот же самый – умножаем знаменатель и числитель на сопряженное знаменателю выражение. Снова смотрим на формулу . В знаменателе уже есть , поэтому знаменатель и числитель нужно домножить на сопряженное выражение , то есть на
Пример 6 Даны два комплексных числа , . Найти их сумму, разность, произведение и частное. Это пример для самостоятельного решения.
|