Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Распределение менеджеров корпорации по возрасту





Возраст (лет) Число менеджеров (чел.)
до 25 25 - 30 30 - 40 40 - 50 50 - 60 60 и более  
Итого:  

 

Для определения среднего возраста управленческого персонала найдем середины возрастных интервалов. При этом величины открытых интервалов (первого и последнего) условно приравниваются к величинам интервалов, примыкающих к ним (второго и предпоследнего). С учетом этого середины интервалов будут следующими:

22, 5 27,5 35,0 45,0 55,0 65,0

Используя среднюю арифметическую взвешенную, определим средний возраст менеджера данной корпорации:

 

Свойства средней арифметической. Средняя арифметическая обладает некоторыми математическими свойствами, более полно раскрывающими ее сущность и в ряде случаев используемыми при ее расчете. Рассмотрим эти свойства:

1. Произведение средней на сумму частот равно сумме произведений отдельных вариантов на соответствующие им частоты:

 

(5.6.)

Действительно, если мы обратимся к приведенному выше примеру расчета среднего курса продажи акций (табл. 5.1.), то получим следующее равенство (за счет округления среднего курса правая и левая части равенства в данном случае будут незначительно отличаться):

1112,9´1900=1080´500+1050´300+1145´1100

 

2. Сумма отклонений индивидуальных значений признака от средней арифметической равна нулю:

 

(5.7.)

 

Для нашего примера:

 

(1080-1112,9)´500+(1050-1112,9)´300+(1145-1112,9)´1100=0

 

Математическое доказательство данного свойства сводится к следующему:

 

 

3. Сумма квадратов отклонений индивидуальных значений признака от средней арифметической меньше, чем сумма квадратов их отклонений от любой другой произвольной величины С:

 

(5.8.)

Следовательно, сумма квадратов отклонений индивидуальных значений признака от произвольной величины С больше суммы квадратов их отклонений от своей средней на величину

 

или

 

На использовании этого свойства базируется расчет центральных моментов, представляющих собой характеристики вариационного ряда при : [3]

 

,

где к определяет порядок момента (центральный момент второго порядка представляет собой дисперсию).

 

4. Если все осредняемые варианты уменьшить или увеличить на постоянное число А, то средняя арифметическая соответственно уменьшится или увеличится на ту же величину:

 

(5.9.)

 

Так, если все курсы продажи акций увеличить на 100 руб., то средний курс также увеличится на 100 руб.:

 

5. Если все варианты значений признака уменьшить или увеличить в А раз, то средняя также соответственно увеличится или уменьшится в А раз:

 

(5.10.)

 

Предположим, курс продажи в каждом случае возрастет в 1,5 раза. Тогда и средний курс также увеличится на 50%:

6. Если все веса уменьшить или увеличить в А раз, то средняя арифметическая от этого не изменится:

 

(5.11.)

 

Так, в нашем примере удобнее было бы рассчитывать среднюю, предварительно поделив все веса на 100:

 

Исходя из данного свойства, можно заключить, что если все веса равны между собой, то расчеты по средней арифметической взвешенной и средней арифметической простой приведут к одному и тому же результату.







Дата добавления: 2015-09-18; просмотров: 447. Нарушение авторских прав; Мы поможем в написании вашей работы!




Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Патристика и схоластика как этап в средневековой философии Основной задачей теологии является толкование Священного писания, доказательство существования Бога и формулировка догматов Церкви...

Основные симптомы при заболеваниях органов кровообращения При болезнях органов кровообращения больные могут предъявлять различные жалобы: боли в области сердца и за грудиной, одышка, сердцебиение, перебои в сердце, удушье, отеки, цианоз головная боль, увеличение печени, слабость...

Вопрос 1. Коллективные средства защиты: вентиляция, освещение, защита от шума и вибрации Коллективные средства защиты: вентиляция, освещение, защита от шума и вибрации К коллективным средствам защиты относятся: вентиляция, отопление, освещение, защита от шума и вибрации...

Влияние первой русской революции 1905-1907 гг. на Казахстан. Революция в России (1905-1907 гг.), дала первый толчок политическому пробуждению трудящихся Казахстана, развитию национально-освободительного рабочего движения против гнета. В Казахстане, находившемся далеко от политических центров Российской империи...

Виды сухожильных швов После выделения культи сухожилия и эвакуации гематомы приступают к восстановлению целостности сухожилия...

КОНСТРУКЦИЯ КОЛЕСНОЙ ПАРЫ ВАГОНА Тип колёсной пары определяется типом оси и диаметром колес. Согласно ГОСТ 4835-2006* устанавливаются типы колесных пар для грузовых вагонов с осями РУ1Ш и РВ2Ш и колесами диаметром по кругу катания 957 мм. Номинальный диаметр колеса – 950 мм...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия