Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Основные показатели вариации.





Информация о средних уровнях исследуемых показателей обычно бывает недостаточной для глубокого анализа изучаемого процесса или явления. Необходимо учитывать и разброс или вариацию значений отдельных единиц, которая является важной характеристикой изучаемой совокупности. В наибольшей степени вариации подвержены курсы акций, объемы спроса и предложения, процентные ставки в разные периоды и в разных местах.

 

Основными показателями, характеризующими вариацию, являются размах, дисперсия, среднее квадратическое отклонение и коэффициент вариации.

Для иллюстрации расчетов этих показателей воспользуемся следующими данными:

Таблица 6.1

Итоги торгов на валютных биржах России 21 января 1999г.

(спецсессия)

 

Биржа Курс, руб./долл. США Оборот, млн.долл. США
ММВБ СПВБ УРВБ СМВБ АТМВБ СВМБ НФВБ 22,73 22,63 22,42 22,40 22,64 22,83 22,56 158,0 10,0 3,0 2,9 0,7 1,6 0,7

 

Простейшим показателем, уже использованным выше при группировке данных, является размах вариации. Он представляет собой разность максимального и минимального значений признака:

 

R=Xmax-Xmin=22,83-22,40=0,43 руб.

 

Недостатком данного показателя является то, что он оценивает только границы варьирования признака и не отражает его колеблемость внутри этих границ. Этого недостатка лишена дисперсия, рассчитываемая как средний квадрат отклонений значений признака от их средней величины:

 

  (6.1)   (6.2)

 

По данным нашего примера определим средневзвешенный курс доллара по итогам всех торгов и рассчитаем дисперсию:

 

Дисперсию в отдельных случаях удобнее рассчитывать по другой формуле, представляющей собой алгебраическое преобразование выражений (5.19.) и (5.20.):

  (6.3)   (6.4)

Наиболее удобным и широко распространенным на практике показателем является среднее квадратическое отклонение. Оно определяется как квадратный корень из дисперсии и имеет ту же размеренность, что и изучаемый признак:

 

  (6.5)     (6.6)

 

В нашем случае получим:

 

 

Рассмотренная величина показывает, что курсы доллара на биржах отклонялись от средневзвешенного курса в среднем на 17,4 руб.

 

Рассмотренные показатели позволяют получить абсолютное значение вариации, т.е. оценивают ее в единицах измерения исследуемого признака. В отличие от них, коэффициент вариации измеряет колеблемость в относительном выражении, относительно среднего уровня, что во многих случаях является предпочтительнее:

(6.7)

Определим значение этого показателя по нашим данным:

 

 

Рассчитанная величина свидетельствует об очень незначительном относительном уровне колеблемости курса доллара. Если V не превышает 33%, то совокупность по рассматриваемому признаку можно считать однородной.

 

Информативность показателей вариации повышается, если они рассчитываются для целей сравнительного анализа. При этом показатели, рассчитанные по одной совокупности, сопоставляются с показателями, рассчитанными по другой аналогичной совокупности или по той же самой, но относящейся к другому периоду времени. Например, исследуется динамика вариации курса доллара по недельным или месячным данным.







Дата добавления: 2015-09-18; просмотров: 519. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Словарная работа в детском саду Словарная работа в детском саду — это планомерное расширение активного словаря детей за счет незнакомых или трудных слов, которое идет одновременно с ознакомлением с окружающей действительностью, воспитанием правильного отношения к окружающему...

Правила наложения мягкой бинтовой повязки 1. Во время наложения повязки больному (раненому) следует придать удобное положение: он должен удобно сидеть или лежать...

ТЕХНИКА ПОСЕВА, МЕТОДЫ ВЫДЕЛЕНИЯ ЧИСТЫХ КУЛЬТУР И КУЛЬТУРАЛЬНЫЕ СВОЙСТВА МИКРООРГАНИЗМОВ. ОПРЕДЕЛЕНИЕ КОЛИЧЕСТВА БАКТЕРИЙ Цель занятия. Освоить технику посева микроорганизмов на плотные и жидкие питательные среды и методы выделения чис­тых бактериальных культур. Ознакомить студентов с основными культуральными характеристиками микроорганизмов и методами определения...

Характерные черты немецкой классической философии 1. Особое понимание роли философии в истории человечества, в развитии мировой культуры. Классические немецкие философы полагали, что философия призвана быть критической совестью культуры, «душой» культуры. 2. Исследовались не только человеческая...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит...

Кран машиниста усл. № 394 – назначение и устройство Кран машиниста условный номер 394 предназначен для управления тормозами поезда...

Studopedia.info - Студопедия - 2014-2025 год . (0.007 сек.) русская версия | украинская версия