Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Другие виды средних





 

При расчете статистических показателей помимо средней арифметической могут использоваться и другие виды средних. Однако, в каждом конкретном случае, в зависимости от характера имеющихся данных, существует только одно истинное среднее значение показателя, являющееся следствием реализации его исходного соотношения.

 

Средняя гармоническая взвешенная. Данная форма используется, когда известен числитель исходного соотношения средней, но неизвестен его знаменатель. Рассмотрим расчет средней урожайности, являющейся одним из основных показателей эффективности производства в агробизнесе:

Таблица 5.4.

Валовой сбор и урожайность подсолнечника по Центрально-Черноземному району (в хозяйствах всех категорий)

 

Область Валовый сбор, тысяч тонн Урожайность, ц/га
Белгородская Воронежская Курская Липецкая Тамбовская 0,5 16,1 9,5 4,8 10,9 7,0

 

Средняя урожайность любой сельскохозяйственной культуры в среднем по нескольким территориям, агрофирмам, фермерским хозяйствам и т.п. может быть определена только на основе следующего исходного соотношения:

 

Общий валовой сбор мы получим простым суммированием валового сбора по областям. Данные же о посевной площади отсутствуют, но их можно получить, разделив валовой сбор по каждой области на урожайность. С учетом этого определим искомую среднюю, предварительно переведя для сопоставимости тонны в центнеры:

 

 

Таким образом, общая посевная площадь подсолнечника по Центрально-Черноземному району составляла 389,3 тыс.га, а средняя урожайность - 9,9 ц с одного гектара.

В данном случае расчет произведен по формуле средней гармонической взвешенной:

 

, где wi=xifi (5.12.)

 

Данная формула используется для расчета средних показателей не только в статике, но и в динамике, когда известны индивидуальные значения признака и веса W за ряд временных интервалов.

 

Средняя гармоническая невзвешенная. Эта форма средней, используемая значительно реже, имеет следующий вид:

 

(5.13.)

Для иллюстрации области ее применения воспользуемся упрощенным условным примером. Предположим, в фирме, специализирующейся на торговле по почте на основе предварительных заказов, упаковкой и отправкой товаров занимаются два работника. Первый из них на обработку одного заказа затрачивает 8 мин., второй - 14 мин. Каковы средние затраты времени на 1 заказ, если общая продолжительность рабочего времени у работников равна?

 

На первый взгляд, ответ на этот вопрос заключается в осреднении индивидуальных значений затрат времени на 1 заказ, т.е. (8+14):2=11 мин. Проверим обоснованность такого подхода на примере одного часа работы. За этот час первый работник обрабатывает 7,5 заказов (60:8), второй - 4,3 заказа (60:14), что в сумме составляет 11,8 заказа. Если же заменить индивидуальные значения их предполагаемым средним значением, то общее число обработанных обоими работниками заказов в данном случае уменьшится:

 

 

Подойдем к решению через исходное соотношение средней. Для определения средних затрат времени необходимо общие затраты времени за любой интервал (например, за час) разделить на общее число обработанных за этот интервал двумя работниками заказов:

 

 

Если теперь мы заменим индивидуальные значения их средней величиной, то общее количество обработанных за час заказов не изменится:

 

 

Подведем итог: средняя гармоническая невзвешенная может использоваться вместо взвешенной в тех случаях, когда значения wi для единиц совокупности равны (рабочий день у сотрудников одинаковый).

 

Средняя геометрическая. Еще одной формулой, по которой может осуществляться расчет среднего показателя, является средняя геометрическая:

 

- невзвешенная

 

(5.14.)

 

- взвешенная

 

Наиболее широкое применение этот вид средней получил в анализе динамики для определения среднего темпа роста, что будет рассмотрено в соответствующей главе.

Средняя квадратическая. В основе вычислений ряда сводных расчетных показателей лежит средняя квадратическая:

- невзвешенная

(5.15.)

- взвешенная

 

Наиболее широко этот вид средней используется при расчете показателей вариации.

В статистическом анализе также применяются степенные средние 3‑го порядка и более высоких порядков.

 







Дата добавления: 2015-09-18; просмотров: 416. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Классификация ИС по признаку структурированности задач Так как основное назначение ИС – автоматизировать информационные процессы для решения определенных задач, то одна из основных классификаций – это классификация ИС по степени структурированности задач...

Внешняя политика России 1894- 1917 гг. Внешнюю политику Николая II и первый период его царствования определяли, по меньшей мере три важных фактора...

Оценка качества Анализ документации. Имеющийся рецепт, паспорт письменного контроля и номер лекарственной формы соответствуют друг другу. Ингредиенты совместимы, расчеты сделаны верно, паспорт письменного контроля выписан верно. Правильность упаковки и оформления....

Классификация холодных блюд и закусок. Урок №2 Тема: Холодные блюда и закуски. Значение холодных блюд и закусок. Классификация холодных блюд и закусок. Кулинарная обработка продуктов...

ТЕРМОДИНАМИКА БИОЛОГИЧЕСКИХ СИСТЕМ. 1. Особенности термодинамического метода изучения биологических систем. Основные понятия термодинамики. Термодинамикой называется раздел физики...

Травматическая окклюзия и ее клинические признаки При пародонтите и парадонтозе резистентность тканей пародонта падает...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия