Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Частные показатели структурных сдвигов





Анализ структуры и ее изменений базируется на относительных показателях структуры - долях или удельных весах, представляющих собой соотношения размеров частей и целого. При этом как частные, так и обобщающие показатели структурных сдвигов могут отражать либо «абсолютное» изменение структуры в процентных пунктах или долях единицы (кавычки показывают, что данные показатели являются абсолютными по методологии расчета, но не по единицам измерения), либо ее относительное изменение в процентах или коэффициентах.

 

«Абсолютный» прирост удельного веса i-ой части совокупности показывает, на сколько процентных пунктов возросла или уменьшилась данная структурная часть в j-ый период по сравнению с (j-1) периодом:[5]

, (10.1)

где - удельный вес (доля) i-ой части совокупности в j-ый период;

- удельный вес (доля) i-ой части совокупности в (j-1)-ый период.

Знак прироста показывает направление изменения удельного веса данной структуры части («+» - увеличение, «-» - уменьшение), а его значение - конкретную величину этого изменения.

Темп роста удельного веса представляет собой отношение удельного веса i-ой части в j-ый период времени к удельному весу той же части в предшествующий период:

(10.2)

Темпы роста удельного веса выражаются в процентах и всегда являются положительными величинами. Однако, если в совокупности имели место какие-либо структурные изменения, часть темпов роста будет больше 100%, а часть - меньше.

Рассчитаем частные показатели структурных сдвигов по данным о распределении коммерческих банков по размеру объявленного уставного фонда (табл. 10.1.):

Таблица 10.1

Группы коммерческих банков по размеру объявленного уставного фонда (млрд.руб.) Число банков Удельный вес, в % к итогу Годовой прирост удельного веса, проц. пунктов Годовой темп роста удельного веса, %
1.01.95   1.01.96   1.01.95   1.01.96  
А           6(гр.4:гр.3)*100
до 1 1 - 5 5 - 20 20 и более     65,8 27,7 5,3 1,2 45,6 34,6 16,2 3,6 -20,2 6,9 10,9 2,4 69,3 124,9 305,7 300,0
Итого     100,0 100,0   X

 

Как следует из данных таблицы 10.1, наиболее существенно в «абсолютном» выражении изменился удельный вес банков с уставным фондом до 1 млрд. руб. - снизился на 20,2 процентного пункта. В относительном выражении наиболее сильно (в 3 раза) выросла доля банков с уставным фондом свыше 5 млрд. руб.

 

Мы рассмотрели показатели структурных сдвигов за один интервал между двумя периодами. Если же изучаемая структура представлена данными за три и более периодов, появляется необходимость в динамическом осреднении приведенных выше показателей, т.е. в расчете средних показателей структурных сдвигов.

 

Средний «абсолютный» прирост удельного веса i-ой структурной части показывает, на сколько процентных пунктов в среднем за какой-либо период (день, неделю, месяц, год и т.п.) изменяется данная структурная часть:

, (10.3)

где n - число осредняемых периодов.

 

Сумма средних «абсолютных» приростов удельных весов всех k структурных частей совокупности, также как и сумма их приростов за один временной интервал, должна быть равна нулю.

Средний темп роста удельного веса характеризует среднее относительное изменение удельного веса i-ой структурной части за n периодов, и рассчитывается по формуле средней геометрической:

(10.4)

 

Подкоренное выражение этой формулы представляет собой последовательное произведение цепных темпов роста удельного веса за все временные интервалы. После проведения несложных алгебраических преобразований данная формула примет следующий вид:

(10.5)

Для иллюстрации этих формул воспользуемся приведенным выше примером (таблица 10.1). Рассчитаем средний месячный прирост (в данном случае - снижение) удельного веса банков 1-ой группы:

проц. пункта.

По этой же группе определим средний месячный темп роста удельного веса:

Мы получили, что удельный вес банков данной группы в среднем ежемесячно снижался на 1,8 процентного пункта или на 3,3% (96,7%-100%).

 

При анализе структуры исследуемого объекта или явления за ряд периодов также можно определить средний удельный вес каждой i-ой части за весь рассматриваемый временной интервал. Однако для его расчета одних лишь относительных данных об удельных весах структурных частей недостаточно, необходимо располагать еще и информацией о размерах этих частей в абсолютном выражении. Используя эти данные, средний удельный вес любой i-ой структурной части можно определить по формуле:

, (10.6)

где - величина i-ой структурной части в j- период времени в абсолютном выражении.

 

Проиллюстрируем эту формулу следующим примером. По данным первичного рынка государственных краткосрочных облигаций (ГКО) и облигаций федерального займа (ОФЗ) в третьем квартале 1995г. определим средний удельный вес ценных бумаг каждого вида в общем объеме выручки от их реализации (табл. 10.2.):

 

Таблица 10.2

Вид ценных бумаг Объем выручки от продажи
  Июль Август Сентябрь Итого
ГКО, трлн.руб. в % к итогу 5,5   80,9 8,1   98,9 11,0   99,1 24,6   ...
ОФЗ, трлн. руб. в % к итогу 1,3   19,1 0,09   1,1 0,1   0,9 1,49   ...
Всего, трлн.руб. 6,8 8,19 11,1 26,09

 

Определим средний удельный вес выручки от продажи ГКО в общем объеме выручки от реализации государственных ценных бумаг:

.

 

Рассчитаем средний удельный вес выручки от продажи ОФЗ:

 

.

 

Итак, в августе-сентябре 1995г. на долю ГКО в среднем ежемесячно приходилось 94,3% общего объема выручки от реализации государственных ценных бумаг, на долю ОФЗ - только 5,7%.

 







Дата добавления: 2015-09-18; просмотров: 839. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Факторы, влияющие на степень электролитической диссоциации Степень диссоциации зависит от природы электролита и растворителя, концентрации раствора, температуры, присутствия одноименного иона и других факторов...

Йодометрия. Характеристика метода Метод йодометрии основан на ОВ-реакциях, связанных с превращением I2 в ионы I- и обратно...

Броматометрия и бромометрия Броматометрический метод основан на окислении вос­становителей броматом калия в кислой среде...

Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...

Краткая психологическая характеристика возрастных периодов.Первый критический период развития ребенка — период новорожденности Психоаналитики говорят, что это первая травма, которую переживает ребенок, и она настолько сильна, что вся последую­щая жизнь проходит под знаком этой травмы...

РЕВМАТИЧЕСКИЕ БОЛЕЗНИ Ревматические болезни(или диффузные болезни соединительно ткани(ДБСТ))— это группа заболеваний, характеризующихся первичным системным поражением соединительной ткани в связи с нарушением иммунного гомеостаза...

Studopedia.info - Студопедия - 2014-2024 год . (0.011 сек.) русская версия | украинская версия