Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

При условиях-ограничениях





где -заданные постоянные величины и .

Стандартной (или симметричной) задачей линейного программирования называется задача, которая состоит в определении максимального (минимального) значения целевой функции при выполнении условий 1 и 3, где и .

Канонической (или основной) задачей линейного программирования называется задача, которая состоит в определении максимального (минимального) значения целевой функции при выполнении условий 2 и 4, где и .

Совокупность чисел = удовлетворяющих ограничениям задачи, называется допустимым решением (или планом).

План = , при котором целевая функция задачи принимает максимальное (минимальное) значение, называется оптимальным.

В случае, когда требуется найти минимум функции можно перейти к нахождению максимума функции , так как min .

Ограничение-неравенство исходной задачи линейного программирования, имеющее вид " ", преобразуется в ограничение-равенство добавлением к левой части дополнительных неотрица­тельной переменной, а ограничение неравенство вида " " - в огра­ничение-равенство вычитанием из левой части дополнительной неотрицательной переменной.

Допустим ограничения задачи отображают наличие производственных ресурсов, тогда числовое значение дополнительной переменной в плане задачи, записанной в форме основной, равно объе­му неиспользуемого соответствующего ресурса.

План называется опорным планом основной задачи линейного программирования, если система векторов, входящих в разложение с положительными коэффициентами линейно независима.

Так как векторы являются m-мерными, то из определения опорного плана следует, что число его положительных компонент не может превышать m.

Опорный план называется невырожденным, если он содержит ровно m положительных компонент, в противном случае - план вырожденный.







Дата добавления: 2015-09-19; просмотров: 331. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Ученые, внесшие большой вклад в развитие науки биологии Краткая история развития биологии. Чарльз Дарвин (1809 -1882)- основной труд « О происхождении видов путем естественного отбора или Сохранение благоприятствующих пород в борьбе за жизнь»...

Этапы трансляции и их характеристика Трансляция (от лат. translatio — перевод) — процесс синтеза белка из аминокислот на матрице информационной (матричной) РНК (иРНК...

Условия, необходимые для появления жизни История жизни и история Земли неотделимы друг от друга, так как именно в процессах развития нашей планеты как космического тела закладывались определенные физические и химические условия, необходимые для появления и развития жизни...

Закон Гука при растяжении и сжатии   Напряжения и деформации при растяжении и сжатии связаны между собой зависимостью, которая называется законом Гука, по имени установившего этот закон английского физика Роберта Гука в 1678 году...

Характерные черты официально-делового стиля Наиболее характерными чертами официально-делового стиля являются: • лаконичность...

Этапы и алгоритм решения педагогической задачи Технология решения педагогической задачи, так же как и любая другая педагогическая технология должна соответствовать критериям концептуальности, системности, эффективности и воспроизводимости...

Studopedia.info - Студопедия - 2014-2025 год . (0.008 сек.) русская версия | украинская версия