Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Элемент симплексной таблицы, находящейся на пересечении ведущих столбца и строки, называют разрешающими и выделяет кружком.





5. Построение нового опорного плана

Переход к новому плану проводится пересчетом симплексной таблицы по методу Жордана-Гаусса. Сначала заменим переменные в базисе, т.е. вместо в базис войдет переменная , соответствующая направляющему столбцу.

Разделим все элементы ведущей строки предыдущей симплексной таблицы на разрешающий элемент и результаты деления занесем в строку следующей симплексной таблицы, соответствующую введенной в базис переменной . В результате этого на месте разрешающего элемента в следующей симплексной таблице будем иметь 1, а в остальных клетках j столбца, включая клетку столбца индексной строки, записываем нули. Остальные новые элементы

нового плана находятся по правилу прямоугольника: - ,

где элемент старого плана, разрешающий элемент,

А и В - элементы старого плана, образующие прямоугольник с элементами и .

 

6. Полученный новый опорный план опять проверяется на оптимальность в соответствии с этапом 3 алгоритма.

При решении задачи линейного программирования на минимум целевой функции, признаком оптимальности плана является отрицательные значения всех коэффициентов индексной строки симплексной таблицы.

Если в направляющем столбце все коэффициенты 0,то функция цели неограниченна на множестве допустимых планов, т.е. и задачу решить нельзя.

Если в столбце симплексной таблицы содержатся два или несколько одинаковых наименьших значения, то новый опорный план будет вырожденным (одна или несколько базисных переменных станут равными нулю). Вырожденные планы могут привести к зацикливанию, т.е. многократному повторению процесса вычислений, не позволяющему завершить задачу. С целью исключения этого для выбора направляющей строки используют способ Креко, который заключается в следующем. Делим элементы строк, имеющие одинаковые наименьшее значение , на предполагаемые разрешающие элементы, а результаты заносим в дополнительные строки. За ведущую строку выбирается та, в которой раньше встречается меньшее число при чтении таблицы слева направо по столбцам.

Если в оптимальный план вошла дополнительная переменная , то при реализации такого плана имеются недоиспользованные ресурсы гo вида в количестве, полученном в столбце свободных членов симплексной таблицы.

Если в индексной строке симплексной таблицы оптимального плана находится нуль, принадлежащий свободной переменной, не вошедшей в базис, а в столбце, содержащем этот нуль, имеется хотя бы один положительный элемент, то задача имеет множество оптимальных планов. Свободную переменную, соответствующую указанному столбцу, можно внести в базис, выполнив соответствующие этапы алгоритма. В результате будет получен второй оптимальный план с другим набором базисных переменных.

 

ПРИМЕР РЕШЕНИЯ ЗАДАЧИ СИМПЛЕКСНЫМ ДЕТОДОМ.

Торговое предприятие, располагающее материально-денежными ресурсами, реализует три группы товаров А, В и С. Плановые нормативы затрат ресурсов на тыс. руб. товарооборота, прибыль от продажи товаров на тыс. руб. товарооборота, а также объем ресурсов заданы в таблице 2.

Определить плановый объем продажи и структуру товарооборота так, чтобы прибыль торгового предприятия была максимальной.

Таблица 2

 

 

Виды материально-денежных ресурсов Норма затрат материально-денежных ресурсов на ед. товарооборота, тыс. руб. Объём ресурсов
А _ группа _ В группа С группа
Рабочее время продавцов, чел./ч 0,1 0,2 0,4  
Площадь торговых залов, м2 0,05 0,02 0,02  
Площадь складских помещений, м2        
Прибыль, т.руб.       max

1.Запишем математическую модель задачи.

Определить , который удовлетворяет условиям







Дата добавления: 2015-09-19; просмотров: 375. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Классификация ИС по признаку структурированности задач Так как основное назначение ИС – автоматизировать информационные процессы для решения определенных задач, то одна из основных классификаций – это классификация ИС по степени структурированности задач...

Внешняя политика России 1894- 1917 гг. Внешнюю политику Николая II и первый период его царствования определяли, по меньшей мере три важных фактора...

Оценка качества Анализ документации. Имеющийся рецепт, паспорт письменного контроля и номер лекарственной формы соответствуют друг другу. Ингредиенты совместимы, расчеты сделаны верно, паспорт письменного контроля выписан верно. Правильность упаковки и оформления....

Разновидности сальников для насосов и правильный уход за ними   Сальники, используемые в насосном оборудовании, служат для герметизации пространства образованного кожухом и рабочим валом, выходящим через корпус наружу...

Дренирование желчных протоков Показаниями к дренированию желчных протоков являются декомпрессия на фоне внутрипротоковой гипертензии, интраоперационная холангиография, контроль за динамикой восстановления пассажа желчи в 12-перстную кишку...

Деятельность сестер милосердия общин Красного Креста ярко проявилась в период Тритоны – интервалы, в которых содержится три тона. К тритонам относятся увеличенная кварта (ув.4) и уменьшенная квинта (ум.5). Их можно построить на ступенях натурального и гармонического мажора и минора.  ...

Studopedia.info - Студопедия - 2014-2024 год . (0.012 сек.) русская версия | украинская версия