Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Докажем, что для множества с введенными операциями не выполнено свойство 7) линейного пространства, т.е. .





Рассмотрим , = .

Так как , , то свойство 7) линейных пространств в данном примере не выполнено.

 

Примерами линейных пространств являются:

1. Множество всех функций действительного переменного, определенных и непрерывных на отрезке , с обычными правилами сложения функций и умножения их на действительные числа.

2. Множество многочленов степени не выше n с коэффициентами из поля K с обычными операциями сложения многочленов и умножения на числа поля K.

3. Множество прямоугольных матриц размерности с элементами из поля K с обычными операциями сложения матриц и умножения их на числа поля K.

4. Множество всех векторов-решений линейной однородной системы уравнений с коэффициентами поля K относительно сложения векторов-решений и умножения их на числа поля K.

 

1) Линейная зависимость векторов

Пусть X линейное пространство над полем K.

Определение 2. Вектор b из линейного пространства X называется линейной комбинацией векторов из X, если существуют такие числа из поля K, что

. (1)

При этом также говорят, что вектор b линейно выражается через векторы .

Определение 3. Линейной оболочкой, натянутой на некоторое множество векторов пространства X, называется множество всевозможных линейных комбинаций векторов из P: = .

Линейная оболочка образует линейное пространство.

Чтобы найти линейное выражение вектора через векторы из , следует записать векторное равенство (1) и от него перейти к покоординатным равенствам в силу того, что два вектора равны тогда и только тогда, когда равны их соответствующие координаты. В результате получится система n линейных уравнений относительно . Решив систему и подставив решение в равенство (1), найдем линейное выражение вектора b через .

Поясним описанное правило на примере.

Задача 3. Найти линейное выражение вектора через векторы и .

Решение.

Составим векторное равенство (1):

, то есть

.

Два вектора пространства равны тогда и только тогда, когда равны их соответствующие координаты. Перейдя к покоординатным равенствам, получим систему линейных уравнений:

Решением системы являются числа , . Поэтому .

Задача 4. Найти все значение параметра , при которых вектор линейно выражается через векторы и .

Решение.

Запишем равенство (1) для данного примера:

.

Переходя к покоординатным равенствам, получим систему:

Решение системы: , существует и единственно при любых . Следовательно, при любом действительном вектор b линейно выражается через заданную систему векторов.

 

Определение 4. Система векторов из линейного пространства X называется линейно зависимой, если хотя бы один из них является линейной комбинацией остальных векторов системы.

Данное определение эквивалентно следующему: система векторов из линейного пространства X называется линейно зависимой, если существуют числа , не равные нулю одновременно, такие, что имеет место равенство:

. (2)

Векторы , не являющиеся линейно зависимыми, называются линейно независимыми, т.е. система векторов линейно независима, если равенство (2) возможно лишь в случае .

Для того чтобы выяснить вопрос о линейной зависимости векторов пространства , следует рассмотреть равенство (2) и перейти от него к покоординатным равенствам. В результате получится система n линейных однородных уравнений относительно . Если полученная система имеет только лишь нулевое решение: , то система векторов линейно независима. В противном случае (т.е. если система имеет и ненулевые решения) система векторов линейно зависима.

Задача 5. Выяснить вопрос о линейной зависимости векторов , , .

Решение.

Составим векторное равенство:

.

Переходя к покоординатным равенствам, получаем систему:

 

Решая систему методом Гаусса, находим, что она имеет ненулевое решение: , , . Поэтому приведенная система векторов является линейно зависимой, причем .

Отметим, что однородная система n уравнений с n переменными: имеет ненулевое решение, если определитель матрицы A равен нулю, т.е. detA=|A|=0. В противном случае, система имеет только тривиальное (нулевое) решение. Таким образом, вопрос о линейной зависимости векторов в пространстве сводится к вычислению определителя матрицы системы. В задаче 5: det A =0. Следовательно, исходная система векторов линейно зависима.

Задача 6. Докажите, что в пространстве многочлены разной степени линейно независимы.

Решение.

Рассмотрим ненулевые многочлены разной степени из пространства : . Докажем, что из равенства следует, что .

Предположим противное: существует .

Тогда . (3)

Так как степени всех многочленов по условию различны, то степень многочлена , стоящего в правой части равенства (3), равна максимальной из степеней многочленов , для которых (такой j существует, так как ), и не совпадает со степенью многочлена , находящегося в левой части равенства, то есть равенство (3) невозможно. Таким образом, получили противоречие, доказав линейную независимость многочленов разной степени.

 

Задача 7. Проверить линейную независимость матриц

, , ,

в пространстве .

Решение.

Составим линейную комбинацию матриц: , то есть:

=

 

.

Переходя к покоординатным равенствам, получаем систему:

, т.е. исходная система матриц линейно независима.

 







Дата добавления: 2015-08-12; просмотров: 2251. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Вопрос 1. Коллективные средства защиты: вентиляция, освещение, защита от шума и вибрации Коллективные средства защиты: вентиляция, освещение, защита от шума и вибрации К коллективным средствам защиты относятся: вентиляция, отопление, освещение, защита от шума и вибрации...

Задержки и неисправности пистолета Макарова 1.Что может произойти при стрельбе из пистолета, если загрязнятся пазы на рамке...

Вопрос. Отличие деятельности человека от поведения животных главные отличия деятельности человека от активности животных сводятся к следующему: 1...

ТЕХНИКА ПОСЕВА, МЕТОДЫ ВЫДЕЛЕНИЯ ЧИСТЫХ КУЛЬТУР И КУЛЬТУРАЛЬНЫЕ СВОЙСТВА МИКРООРГАНИЗМОВ. ОПРЕДЕЛЕНИЕ КОЛИЧЕСТВА БАКТЕРИЙ Цель занятия. Освоить технику посева микроорганизмов на плотные и жидкие питательные среды и методы выделения чис­тых бактериальных культур. Ознакомить студентов с основными культуральными характеристиками микроорганизмов и методами определения...

САНИТАРНО-МИКРОБИОЛОГИЧЕСКОЕ ИССЛЕДОВАНИЕ ВОДЫ, ВОЗДУХА И ПОЧВЫ Цель занятия.Ознакомить студентов с основными методами и показателями...

Меры безопасности при обращении с оружием и боеприпасами 64. Получение (сдача) оружия и боеприпасов для проведения стрельб осуществляется в установленном порядке[1]. 65. Безопасность при проведении стрельб обеспечивается...

Studopedia.info - Студопедия - 2014-2025 год . (0.014 сек.) русская версия | украинская версия