Перший закон термодинаміки. Робота газу при зміні його об’єму
Розглянемо термодинамічну систему, для якої механічна енергія не змінюється, а змінюється лише її внутрішня Перша з них зводиться до того, що енергія впорядкованого руху одного тіла переходить в енергію впорядкованого руху іншого тіла або його частин. Це може відбуватись під час взаємодії макроскопічних тіл, розміри яких у багато разів більші за розміри окремих атомів або молекул. Таку форму передавання енергії називають роботою. Наприклад, газ, що розширюється в циліндрі двигуна внутрішнього згоряння, переміщує при цьому поршень і передає йому енергію у формі роботи. Друга форма передавання енергії здійснюється при безпосередньому обміні енергією між частинками взаємодіючих тіл, що рухаються хаотично. За рахунок переданої тілу енергії підсилюється невпорядкований рух його частинок, тобто Теплота подібно до роботи є формою передавання енергії, а зовсім не видом енергії. Тілу треба надати різних кількостей теплоти, щоб перевести його з одного стану в інший, залежно від того, через які проміжні стани воно при цьому проходить. Це означає, що теплота, на відміну від енергії, не є функцією стану. Робота і теплота мають ту спільну властивість, що вони існують лише в процесі передавання енергії, а їх числові значення істотно залежать від виду цього процесу. Проте між теплотою і роботою існує глибока якісна відмінність. Теплота і робота є нерівноцінними формами передавання енергії впорядкованого руху. Виконання роботи над системою може безпосередньо привести до збільшення будь-якого виду енергії системи (кінетичної, потенціальної, внутрішньої). Надання системі (або тілу) теплоти, тобто збільшення енергії хаотичного теплового руху її частинок безпосередньо приводить тільки до збільшення внутрішньої енергії. Для того, щоб при підведенні до системи теплоти зросла енергія інших видів, крім внутрішньої, необхідно хоч би частково перетворити хаотичний рух частинок в упорядкований або перетворити теплоту в роботу. Теплота і робота тісно пов’язані між собою. Обидві ці форми передавання енергії переходять одна в одну і в реальних умовах супроводять одна одну. Так, наприклад, при нагріванні металевого стрижня не тільки збільшується його внутрішня енергія, а відбувається також розширення стрижня і, отже, виконується робота розширення. Досліди показали, що теплота перетворюється в роботу, або робота в теплоту завжди в точно відповідних кількостях, незалежно від способу перетворення. Отже, можна говорити про дві форми передачі енергії від одних тіл до інших: у формі роботи і у формі теплоти. Енергія механічного руху може перетворюватись в енергію теплового руху і навпаки. При цих перетвореннях має бути дотримано закону збереження і перетворення енергії, чим, по суті, застосовним до термодинамічних процесів і є перший закон термодинаміки, який сформульований в результаті узагальнення дослідних даних. Допустимо, що деяка система (газ, що знаходиться в циліндрі під поршнем), маючи внутрішню енергію , отримала деяку кількість теплоти Q і, перейшовши в новий стан, що характеризується внутрішньою енергією , виконала роботу A проти зовнішніх сил. Кількість теплоти вважається додатною, коли вона підводиться до системи, а робота – позитивною, коли система виконує її проти зовнішніх сил. Дослід показує, що відповідно до закону збереження енергії при довільному способі переходу системи з першого стану у другий зміна внутрішньої енергії дорівнюватиме різниці між кількістю теплоти Q, отриманою системою, і роботою A, яка виконана системою проти зовнішніх сил: , або . Це рівняння є математичним виразом першого закону термодинаміки: теплота, надана системі, витрачається на збільшення її внутрішньої енергії і на виконання системою роботи проти зовнішніх сил. Вираз для першого закону термодинаміки для нескінченно малої зміни стану системи матиме вигляд: або в коректнішій формі , де – нескінченно мала зміна внутрішньої енергії системи, – нескінченно мала робота, – нескінченно мала кількість теплоти. У цьому виразі є повним диференціалом, а і не є повними диференціалами, а функціоналами і залежать від вигляду функції, що описує перехід з одного стану в другий. Дуже важливим є випадок, коли і . Робота, що виконується машиною за один цикл, дорівнює підведеній ззовні теплоті . Цей висновок дає змогу сформулювати перший закон термодинаміки так: неможливо побудувати періодично діючий двигун, який виконував би роботу без підведення енергії ззовні або виконував би роботу більшу, ніж кількість переданої йому ззовні енергії (вічний двигун першого роду неможливий). Знайдемо роботу, яка виконується газом при зміні його об’єму. Нехай газ знаходиться в циліндричній посудині з поршнем (рис 66). Якщо газ, розширюючись, переміщує поршень на нескінченно малу відстань , то він виконує над ним роботу , де S – площа поршня, - зміна об’єму газу. Повну роботу A, яка виконана газом при зміні його об’єму від до , знайдемо інтегруванням: . Результат інтегрування визначається характером залежності між тиском i об’ємом газу. Зобразимо графічно залежність тиску від об’єму (рис. 67). При збільшенні об’єму на виконана газом робота дорівнює , тобто вона числово дорівнює площі, яка заштрихована на рис. 67. Повна робота, що виконується газом при розширенні від об’єму до визначається площею, яка обмежена віссю абсцис, кривою і прямими і . Величина роботи A залежить не тільки від початкового і кінцевого станів тіла, а й від того, яким є термодинамічний процес, тобто вздовж якої кривої відбувається зміна стану. Якщо процес відбувався вздовж замкненої кривої і газ повернувся до початкового стану, то повна робота, виконана газом, не дорівнює нулю. ПУЛЮЙ ІВАН (1845–1918) Запропонував в 1875 р. апарат для визначення механічного еквівалента теплоти, який відзначався високою точністю вимірювання. За його допомогою отримав значення J=(425,2±5,4) кгм/ккал, яке збігається з результатом Джоуля J=(427,9) кгм/ккал. ШІЛЛЕР МИКОЛА МИКОЛАЙОВИЧ (1848-1910) Показав, що поняття кількості тепла може бути переведене з основних понять в допоміжне, другорядне
|