Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Энтропия. Набором макроскопичесих параметров, например, и , задается состояние системы в целом или макросостояниесистемы





Набором макроскопичесих параметров, например, и , задается состояние системы в целом или макросостояние системы. Набор параметров и выражает осредненное суммарное состояние большого числа молекул, из которых состоит система.Назовем микросостоянием системы состояние всех молекул, образующих систему. Состояние каждой молекулы определяется заданием ее координат, и скорости в данный момент времени. Очевидно, что микросостояние системы непрерывно меняется. Однако, набор макроскопических параметров и , а, следовательно, и макросостояние системы при этом может не меняться. Назовем термодинамической вероятностью число различных микрососояний, соответсвующих данному макросостоянию.

Вероятность макросостояния пропорциональна его термодинамической вероятности. Для равновесного состояния системы, пр и котором параметры , , и остаются неизменными, имеет максимальное значение по сравнению с любым неравновесным состоянием. Поэтому равновесное состояние наиболее вероятно. Если система переходит из неравновесного состояния в равновесное, то такой процесс необратим.

Определить вероятность состояния через термодинамическую вероятность неудобно, так как не обладает свойством аддитивности (нельзя складывать). Действительно, если мысленно разбить термодинамическую систему на подсистем с термодинамическими вероятностями (рис 25. 1), то


 

Рис. 25. 1

 

 

термодинамическая вероятность системы

 

(25. 1)

откуда видно, что не является аддитивной величиной.

Взяв логарифм от соотношения (25. 1) получим

 

 

откуда видно, что - аддитивная величина (можно складывать).

Введем физическую величину

 

(25. 2)

где - постоянная Больцмана. Величина называют энропией системы. Она характеризует вероятность макросостояния системы. Определение энтропии (25. 2) было сделано Больцманом.

Дадаим еще одно определение энтропии. Рассмотрим расширение газа в пустоту (рис. 25.2).

 


 

Рис. 25.2

 

Расчет дает

 

~

 

где - число молекул газа в объеме , или

 

,

 

где - коэффициент пропорциональности.

Очевидно, в нашем случае , так как . С учетом выражения (25. 2) можем написать

 

 

откуда приращение энтропии

 

(25. 3)

Учитывая, что и , перепишем выражение (25. 3) в виде

 

(25. 4)

 

При изотермическом увеличении объема газа от до при температуре количество тепла, полученное газом,

 

 

(25. 5)

(см.пример 23.1). Сравнивая выражение (25. 4) и (25. 5), получаем

 

(25. 6)

или для элементарного приращения энтропии

 

(25. 7)

Формула (25. 7) верна не только для изотермического процесса, но и для любого равновесного обратимого процесса

 

(25. 8)

Определение энтропии (25. 7) было сделано Клаузиусом.

Из выражений (25. 2) и (25. 6) следует, что энтропия является функцией состояния системы.

 

 

Пример 25. 1 Определить приращение энтропии при изотермическом кислорода массой от объема до объема .

 

Дано:   Решение  
   

 

 

 

 


 

Ответ:

 

 

Пример 25. 2. Пять молей гелия изохорически переводят из состояния, в котором его давление , в состояние, в котором его давление . Определить приращение энтропии гелия.

 

Дано:   Решение    
   

 

 

 

 

 

 

Ответ:

 







Дата добавления: 2015-08-12; просмотров: 477. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

КОНСТРУКЦИЯ КОЛЕСНОЙ ПАРЫ ВАГОНА Тип колёсной пары определяется типом оси и диаметром колес. Согласно ГОСТ 4835-2006* устанавливаются типы колесных пар для грузовых вагонов с осями РУ1Ш и РВ2Ш и колесами диаметром по кругу катания 957 мм. Номинальный диаметр колеса – 950 мм...

Философские школы эпохи эллинизма (неоплатонизм, эпикуреизм, стоицизм, скептицизм). Эпоха эллинизма со времени походов Александра Македонского, в результате которых была образована гигантская империя от Индии на востоке до Греции и Македонии на западе...

Демографияда "Демографиялық жарылыс" дегеніміз не? Демография (грекше демос — халық) — халықтың құрылымын...

ФАКТОРЫ, ВЛИЯЮЩИЕ НА ИЗНОС ДЕТАЛЕЙ, И МЕТОДЫ СНИЖЕНИИ СКОРОСТИ ИЗНАШИВАНИЯ Кроме названных причин разрушений и износов, знание которых можно использовать в системе технического обслуживания и ремонта машин для повышения их долговечности, немаловажное значение имеют знания о причинах разрушения деталей в результате старения...

Различие эмпиризма и рационализма Родоначальником эмпиризма стал английский философ Ф. Бэкон. Основной тезис эмпиризма гласит: в разуме нет ничего такого...

Индекс гингивита (PMA) (Schour, Massler, 1948) Для оценки тяжести гингивита (а в последующем и ре­гистрации динамики процесса) используют папиллярно-маргинально-альвеолярный индекс (РМА)...

Studopedia.info - Студопедия - 2014-2025 год . (0.008 сек.) русская версия | украинская версия