Индекс корреляции.
Исторически первым показателем тесноты связи был парный коэффициент корреляции, предложенный К. Пирсоном. Он основан на показателе ковариации, который представляет собой среднее значение произведения отклонений индивидуальных значений результативного и факторного признаков от своих средних значений. Показатель ковариации оценивает совместное изменение двух признаков, результата и фактора:
cov =
где Показатель ковариации содержательно сложно интерпретировать. Нормированное значение показателя ковариации – это и есть показатель парной корреляции Пирсона.
или после преобразований:
где Достоинством коэффициента корреляции является то, что он имеет пределы изменения, следовательно, его величина легко может быть интерпретирована. Значения показателя изменяются от -1 до +1. Близость коэффициента к нулю свидетельствует об отсутствии корреляционной зависимости. Близость к единице – о тесной корреляционной зависимости. Знак коэффициента корреляции указывает на прямую, либо обратную зависимость. Величина конкретных значений интерпретируется следующим образом:
Парный коэффициент корреляции – симметричный показатель, т.е.
При условии справедливости нулевой гипотезы, распределение t-статистики соответствует закону распределения вероятностей Стьюдента с n-2 степенями свободы. Исходя из этого, находится табличное значение t-статистики, соответствующее заданному аналитиком уровню вероятности и полученному числу степеней свободы. Если расчетное значение t окажется больше табличного, то гипотеза об отсутствии связи должна быть отвергнута (с вероятностью ошибки В практике экономических исследований и анализа часто приходится изучать множественную корреляционную зависимость, т.е. оценивать влияние двух и более факторов на признак-результат. Теснота связи между комплексом факторов и зависимой переменной оценивается с помощью множественного коэффициента корреляции (
, (56) где Множественный коэффициент корреляции изменяется от нуля до единицы, не может быть отрицательным. Интерпретация конкретных значений множественного коэффициента корреляции аналогична интерпретации значений парного коэффициента с той только разницей, что оценивается теснота корреляционной зависимости между результативным признаком и всей совокупностью анализируемых факторов. Квадрат коэффициента корреляции (r2; При изучении множественной корреляционной зависимости рассчитываются также частные коэффициенты корреляции, характеризующие тесноту связи между результатом и одним признаком-фактором, при условии элиминирования влияния других факторов, включенных в анализ. Элиминирование выполняется путем закрепления значений факторов (кроме оцениваемого) на неизменном уровне (как правило, на среднем). При двухфакторной корреляционной зависимости рассчитывается два частных коэффициента корреляции:
Коэффициенты корреляции, в большей степени, пригодны для оценки линейной зависимости между изучаемыми признаками. Если связь нелинейная, то следует отдать предпочтение универсальному показателю, который называется корреляционное отношение ( Ø Эмпирическое, рассчитанное по данным аналитической группировки, как отношение межгрупповой дисперсии (
Ø Теоретическое, рассчитанное по результатам регрессионного анализа, как отношение факторной дисперсии (
Корреляционное отношение изменяется так же от нуля до единицы и интерпретируется аналогично коэффициенту корреляции. Квадрат корреляционного отношения ( Для понимания сути корреляционного отношения и коэффициента детерминации, следует сформулировать правило сложения дисперсий в терминах регрессионного анализа. Оно звучит так: общая дисперсия признака-результата есть сумма факторной и остаточной дисперсий:
Факторная дисперсия ( Остаточная дисперсия ( Общая дисперсияпризнака-результата ( Коэффициент детерминации ( Величина коэффициента детерминации реагирует на число факторов, включенных в уравнение регрессии. Поэтому для ответа на вопрос, какую часть дисперсии результативного признака удается объяснить в каждом конкретном случае, исходят из величины скорректированного коэффициента детерминации. Корректировка коэффициента осуществляется с учетом числа степеней свободы, т.е. с учетом объема изучаемой совокупности и числа факторов, включенных в анализ:
где Оценка корреляционной зависимости может быть также дана на основе индекса корреляции (
|