Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Линейные однородные уравнения с постоянными коэффициентами.





ДУ вида

(3)

называется линейным однородным дифференциальным уравнением с постоянным коэффициентами.

Где a,b,c-постоянные вещественные числа.

 

 

Будем искать частные решения ДУ (3) в виде , где , тогда .

Подставляя значения в ДУ (3), находим

Так как то получим следующее алгебраическое выражение

(4)

 

которое называется характеристическим уравнением для ЛОДУ (3).

Уравнение (4) является уравнением 2-ой степени и имеет 2 корня (действительных или комплексных, среди них могут быть и равные).

Каждому корню характеристического уравнения соответствует частное решение , вид которого зависит от характера корня.

Совокупность частных линейно независимых решений составляет фундаментальную систему решений ЛОДУ (3).

Тогда общее решение ЛОДУ (12) имеет вид:

 

 

Определение 7: Компоненты общего решения дифференциального уравнения (3) определяются в зависимости от характера корней характеристического уравнения (4) следующим образом:

 

1) каждому действительному простому (т.е. не кратному) корню в общем решении соответствует слагаемое вида ;

 

2) каждому действительному корню кратности в общем решении соответствует слагаемое вида

 

;

3) каждой паре комплексных сопряженных простых корней и в общем решении соответствует слагаемое вида ;

 

4) каждой паре комплексных сопряженных корней и кратности в общем решении соответствует слагаемое вида

. (16)

Рассмотрим частные случаи линейных однородных уравнений ЛОДУ:

 

а) если =2, т.е. ЛОДУ второго порядка;

 

Способ решения ЛОДУ второго порядка состоит в том, что:

· при помощи замены

- через , - через , - через 1

составляется характеристическое уравнение, соответствующее данному ЛОДУ;

· решается характеристическое уравнение, находятся корни:

· устанавливается характер корней (действительные или комплексные, различные или кратные) и определяется соответствующая этим корням фундаментальная система решений

· составляется общее решение ЛОДУ:

 

.

 

Последовательность нахождения общего решения ЛОДУ второго порядка и приемы составления фундаментальной системы решений представлены в таблице 2.

 

 

Таблица 2.

Общее решение (ЛОДУ) второго порядка.

Порядок n =2
Общий вид ЛОДУ
Характеристическое уравнение  
Характер корней - действительные различные числа действительные одинаковые числа - комплексно сопряженные числа
Фундаментальная система решений
Общее решение

Пример1. Найти фундаментальную систему решений ДУ:

 







Дата добавления: 2015-08-12; просмотров: 725. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Тактика действий нарядов полиции по предупреждению и пресечению правонарушений при проведении массовых мероприятий К особенностям проведения массовых мероприятий и факторам, влияющим на охрану общественного порядка и обеспечение общественной безопасности, можно отнести значительное количество субъектов, принимающих участие в их подготовке и проведении...

Тактические действия нарядов полиции по предупреждению и пресечению групповых нарушений общественного порядка и массовых беспорядков В целях предупреждения разрастания групповых нарушений общественного порядка (далееГНОП) в массовые беспорядки подразделения (наряды) полиции осуществляют следующие мероприятия...

Механизм действия гормонов а) Цитозольный механизм действия гормонов. По цитозольному механизму действуют гормоны 1 группы...

Мотивационная сфера личности, ее структура. Потребности и мотивы. Потребности и мотивы, их роль в организации деятельности...

Классификация ИС по признаку структурированности задач Так как основное назначение ИС – автоматизировать информационные процессы для решения определенных задач, то одна из основных классификаций – это классификация ИС по степени структурированности задач...

Внешняя политика России 1894- 1917 гг. Внешнюю политику Николая II и первый период его царствования определяли, по меньшей мере три важных фактора...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия