Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Линейные однородные уравнения с постоянными коэффициентами.





ДУ вида

(3)

называется линейным однородным дифференциальным уравнением с постоянным коэффициентами.

Где a,b,c-постоянные вещественные числа.

 

 

Будем искать частные решения ДУ (3) в виде , где , тогда .

Подставляя значения в ДУ (3), находим

Так как то получим следующее алгебраическое выражение

(4)

 

которое называется характеристическим уравнением для ЛОДУ (3).

Уравнение (4) является уравнением 2-ой степени и имеет 2 корня (действительных или комплексных, среди них могут быть и равные).

Каждому корню характеристического уравнения соответствует частное решение , вид которого зависит от характера корня.

Совокупность частных линейно независимых решений составляет фундаментальную систему решений ЛОДУ (3).

Тогда общее решение ЛОДУ (12) имеет вид:

 

 

Определение 7: Компоненты общего решения дифференциального уравнения (3) определяются в зависимости от характера корней характеристического уравнения (4) следующим образом:

 

1) каждому действительному простому (т.е. не кратному) корню в общем решении соответствует слагаемое вида ;

 

2) каждому действительному корню кратности в общем решении соответствует слагаемое вида

 

;

3) каждой паре комплексных сопряженных простых корней и в общем решении соответствует слагаемое вида ;

 

4) каждой паре комплексных сопряженных корней и кратности в общем решении соответствует слагаемое вида

. (16)

Рассмотрим частные случаи линейных однородных уравнений ЛОДУ:

 

а) если =2, т.е. ЛОДУ второго порядка;

 

Способ решения ЛОДУ второго порядка состоит в том, что:

· при помощи замены

- через , - через , - через 1

составляется характеристическое уравнение, соответствующее данному ЛОДУ;

· решается характеристическое уравнение, находятся корни:

· устанавливается характер корней (действительные или комплексные, различные или кратные) и определяется соответствующая этим корням фундаментальная система решений

· составляется общее решение ЛОДУ:

 

.

 

Последовательность нахождения общего решения ЛОДУ второго порядка и приемы составления фундаментальной системы решений представлены в таблице 2.

 

 

Таблица 2.

Общее решение (ЛОДУ) второго порядка.

Порядок n =2
Общий вид ЛОДУ
Характеристическое уравнение  
Характер корней - действительные различные числа действительные одинаковые числа - комплексно сопряженные числа
Фундаментальная система решений
Общее решение

Пример1. Найти фундаментальную систему решений ДУ:

 







Дата добавления: 2015-08-12; просмотров: 725. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

ТЕОРИЯ ЗАЩИТНЫХ МЕХАНИЗМОВ ЛИЧНОСТИ В современной психологической литературе встречаются различные термины, касающиеся феноменов защиты...

Этические проблемы проведения экспериментов на человеке и животных В настоящее время четко определены новые подходы и требования к биомедицинским исследованиям...

Классификация потерь населения в очагах поражения в военное время Ядерное, химическое и бактериологическое (биологическое) оружие является оружием массового поражения...

САНИТАРНО-МИКРОБИОЛОГИЧЕСКОЕ ИССЛЕДОВАНИЕ ВОДЫ, ВОЗДУХА И ПОЧВЫ Цель занятия.Ознакомить студентов с основными методами и показателями...

Меры безопасности при обращении с оружием и боеприпасами 64. Получение (сдача) оружия и боеприпасов для проведения стрельб осуществляется в установленном порядке[1]. 65. Безопасность при проведении стрельб обеспечивается...

Весы настольные циферблатные Весы настольные циферблатные РН-10Ц13 (рис.3.1) выпускаются с наибольшими пределами взвешивания 2...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия