Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Введение. по асимптотическим методам в теории





Курсовая работа

по асимптотическим методам в теории

дифференциальных уравнений

 

Выполнил: студентка группы ММ-09-01

Когут Я.П.

 

Проверил: профессор кафедры

дифференциальных уравнений

Остапенко В.А.

 

г. Днепропетровск

2011 г.

Содержание

Введение………………………………………………………………………3

Теоретическая часть …………...…………………………………………...4

Раздел 1. Система Ляпунова ─ случай одной степени свободы………….......4

1. Система Ляпунова.…………………………………………….4

2. Приведение к каноническому виду. …………………………4

3. Преобразование интеграла H. ………………………………..5

4. Периодичность решений системы Ляпунова. ………………5

5. Теорема Ляпунова. ……………………………………………7

Раздел 2. Условия существования периодических решений.…………..…..10

1. Необходимые и достаточные условия периодичности. …….10

Раздел 3. Метод Ляпунова. ………………………………………………………13

1. Алгоритм. ……………………………………………………..13

Практическая часть ……………………………………………………….16

Список литературы ………………………………………………………..17

Введение.

Метод Ляпунова ─ Пуанкаре посвящен изложению основ классической теории периодических решений дифференциальных уравнений, правые части которых являются аналитическими функциями своих переменных. Эта теория возникла из работ Ляпунова и Пуанкаре в конце 19 века и в последующие десятилетия получила дальнейшее развитие. В ней появились новые точки зрения, расширился круг изучаемых вопросов. Наряду с исследованиями теоретического характера продолжилась дальнейшая разработка методов эффективного построения периодических решений.

Начиная с двадцатых годов прошлого века, теория Ляпунова ─ Пуанкаре благодаря работам Андронова и Мандельштама находит широкое применение в теории колебаний. Большой вклад в дальнейшее развитие классической теории периодических решений сделали И. Г. Малкин и Г. В. Каменков.

В этой курсовой работе будет рассматриваться алгоритм построения периодического решения задачи Коши системы дифференциальных уравнений

 

Теоретическая часть

Раздел 1.

Система Ляпунова ─ случай одной степени свободы.

 

Система Ляпунова.

Рассмотрим систему дифференциальных уравнений

(1.1)

где и ─ аналитические функции своих переменных в окрестности точки и такие, что их разложение по степеням и начинается с членов, порядок которых не ниже второго:

(1.2)

Систему (1.1) будем называть системой Ляпунова, если выполняются следующие условия:

1) уравнение

(1.3)

имеет чисто мнимые корни ;

2) система (1.1) допускает аналитический первый интеграл

, (1.4)

разложение которого по степеням переменных и начинается с членов второго порядка малости, т. е. функция в окрестности точки является аналитической функцией своих переменных и представима в следующем виде:







Дата добавления: 2015-08-10; просмотров: 376. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Билиодигестивные анастомозы Показания для наложения билиодигестивных анастомозов: 1. нарушения проходимости терминального отдела холедоха при доброкачественной патологии (стенозы и стриктуры холедоха) 2. опухоли большого дуоденального сосочка...

Сосудистый шов (ручной Карреля, механический шов). Операции при ранениях крупных сосудов 1912 г., Каррель – впервые предложил методику сосудистого шва. Сосудистый шов применяется для восстановления магистрального кровотока при лечении...

Трамадол (Маброн, Плазадол, Трамал, Трамалин) Групповая принадлежность · Наркотический анальгетик со смешанным механизмом действия, агонист опиоидных рецепторов...

Словарная работа в детском саду Словарная работа в детском саду — это планомерное расширение активного словаря детей за счет незнакомых или трудных слов, которое идет одновременно с ознакомлением с окружающей действительностью, воспитанием правильного отношения к окружающему...

Правила наложения мягкой бинтовой повязки 1. Во время наложения повязки больному (раненому) следует придать удобное положение: он должен удобно сидеть или лежать...

ТЕХНИКА ПОСЕВА, МЕТОДЫ ВЫДЕЛЕНИЯ ЧИСТЫХ КУЛЬТУР И КУЛЬТУРАЛЬНЫЕ СВОЙСТВА МИКРООРГАНИЗМОВ. ОПРЕДЕЛЕНИЕ КОЛИЧЕСТВА БАКТЕРИЙ Цель занятия. Освоить технику посева микроорганизмов на плотные и жидкие питательные среды и методы выделения чис­тых бактериальных культур. Ознакомить студентов с основными культуральными характеристиками микроорганизмов и методами определения...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия