Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Теорема Ляпунова.





Теперь вычислим период, для этого составим дифференциальные уравнения, которым удовлетворяют переменные ρ и θ. Вычислим

(1.15)

Заменяя в системе (1.15) производные и их выражениями из уравнений (1.8) и разрешая полученную систему относительно производных и , найдем искомые уравнения

(1.16)

Из второго уравнения определим t:

(1.17)

Для того чтобы удовлетворить условиям (1.13), необходимо константу (1.17) принять равной нулю. Используем тот факт, что ρ - аналитическая функция μ. Это позволит разложить подынтегральную функцию в выражении (1.17) в ряд по степеням μ

(1.17’)

где - периодические функции θ периода 2π. Следовательно, подынтегральная функция в (1.17’) также периодическаяфункцияθ периода 2π. Следовательно, интеграл

не зависит от θ0 и его можно записать в виде

,

где - вполне определенные числа. Таким образом, при измени θ; на 2π время t получает приращение Т

, (1.18)

не зависящие от θ0.

Пусть теперь Ф(θ) – некоторая периодическая функция θ периода 2π, тогда

. (1.19)

Рассматривая ее как функцию t, будем иметь

. (1.20)

Равенство (1.19) справедливо для любых θ, следовательно, и равенство (1.20) справедливо для любых t, т. е. Ф(t) – периодическая функция t. Значит, величина Т, определенная формулой (1.18) как функция μ, и есть период решения.

Используя (1.17), мы можем записать его в следующем виде:

где период Т стремится к периоду линейных колебаний 2π/λ, т. е. к периоду колебаний в системе (1.8) при .

Покажем теперь, что Т- четная функция μ. Вернемся сова к интегралу (1.11). рассматривая его как уравнение относительно ρ, мы получаем в окрестности точки ρ=0 два решения. Одно из них

(1.21)

другое

(1.21’)

Теперь заметим, что левая часть уравнения (1.11) не изменится, если заменим ρ на -ρ и θ на θ + 2π. Следовательно, на основании (1.21) будем иметь

(1.22)

Значение ρ, определенное рядом (1.22), будет корнем уравнения (1.11), не совпадающее с (1.21) (потому, что для малых ρ из (1.21) следует ρ = μ+О(μ2), а из (1.22) ρ = - μ+О(μ2)). Следовательно, оно будет определяться рядом (1.21’).

Сравнивая (1.21’) и (1.22), получаем

и т.д.

Отсюда следует, что если в выражении (1.21) заменить μ на – μ, а θ на θ + π, то величина ρ примет свое значение с обратным знаком:

.

Выпишем теперь выражение для периода Т. На основании (1.17) имеем

. (1.23)

Сделаем замену в (1.23) замену μ на –μ, а θ на θ + π. Тогда получим величину

.

Согласно доказанному величины и сохраняют свои значения. Следовательно, то же самое можно сказать и о функциях Х и Y. В то же время , и изменяют свои знаки. Следовательно, знаменатель изменит знак на обратный, но и числитель изменит знак на обратный. Следовательно,

.

Итак,

,

т. е. период – четная функция величины μ.

Таким образом, выше было доказано теорему Ляпунова, а теперь сформулируем ее.

Теорема Ляпунова.

Если постоянная достаточно мала, то все решения системы уравнения (1.8) ─ периодические функции t, причем период ─ четная функция величин и при стремится к. Решения системы (1.8) являются аналитическими функциями величины c ─ начального отклонения переменной x.

Имея в виду формулу

выражение периода можно переписать в следующем виде:

(1.24)

 

Раздел 2.

Условия существования периодических решений







Дата добавления: 2015-08-10; просмотров: 355. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Прием и регистрация больных Пути госпитализации больных в стационар могут быть различны. В цен­тральное приемное отделение больные могут быть доставлены: 1) машиной скорой медицинской помощи в случае возникновения остро­го или обострения хронического заболевания...

ПУНКЦИЯ И КАТЕТЕРИЗАЦИЯ ПОДКЛЮЧИЧНОЙ ВЕНЫ   Пункцию и катетеризацию подключичной вены обычно производит хирург или анестезиолог, иногда — специально обученный терапевт...

Ситуация 26. ПРОВЕРЕНО МИНЗДРАВОМ   Станислав Свердлов закончил российско-американский факультет менеджмента Томского государственного университета...

Закон Гука при растяжении и сжатии   Напряжения и деформации при растяжении и сжатии связаны между собой зависимостью, которая называется законом Гука, по имени установившего этот закон английского физика Роберта Гука в 1678 году...

Характерные черты официально-делового стиля Наиболее характерными чертами официально-делового стиля являются: • лаконичность...

Этапы и алгоритм решения педагогической задачи Технология решения педагогической задачи, так же как и любая другая педагогическая технология должна соответствовать критериям концептуальности, системности, эффективности и воспроизводимости...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия