Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Поиск опорного решения задачи линейного программирования





1. Преобразовать систему ограничений к стандартному виду:

(1)

Примечание. Переменные слева от равенств называются базисными, а в круглых скобках – свободные.

2. Если в системе (1) все ai ³ 0,

то

приравнять к нулю все свободные переменные и этим получить опорное решение.

3. Если в системе (1) найдётся ai < 0,

то

найти и поменять местами свободную переменную xk и базисную переменную xn (то есть свободную переменную xk ввести в состав базисных, а базисную переменную xn – в состав свободных).

4. Если обмен произвести удалось,

то

продолжить с п. 2,

иначе

опорного решения не существует.

Пример. Найти опорное решение следующей задачи линейного программирования

(2)

Решение.

1. Приводим систему ограничений к стандартному виду:

а) получаем систему линейных уравнений по правилу:

если в системе ограничений есть неравенства, то в левые части неравенств со знаком "³" следует добавить новые переменные, а из левых части неравенств "£" – вычесть новые переменные:

в системе ограничений (2) есть неравенства и все со знаком "£", поэтому, добавляем к левым частям неравенств новые переменные:

(3)

б) Приводим систему линейных уравнений (3) к ступенчатому виду:

· записываем расширенную матрицу системы из коэффициентов при неизвестных и свободных членов:

;

· умножаем вторую строку на -1 и меняем местами первую и вторые строки:

;

· умножаем первую строку на 5 и складываем со второй, умножаем первую строку на 3 и складываем с третьей и получаем ступенчатый вид матрицы:

.

в) Приводим систему линейных уравнений к приведённому ступенчатому виду:

· первую строку умножаем на -1, третью строку делим на -3:

;

· умножаем третью строку на -3 и складываем со второй, складываем третью и первую строки и получаем приведённый ступенчатый вид матрицы:

или

или

· приводим систему к стандартному виду:

(4)

Базисные переменные: x1, x2 и x3, свободные переменные: x4, y1, y2 и y3.

2. В системе (4) есть не отрицательные свободные члены, поэтому ищем для обмена свободную и базисную переменные:

· взять любое уравнение с отрицательным свободным членом,

в системе (4) берём первое уравнение;

· если во взятом уравнении нет отрицательных коэффициентов при свободных переменных, то опорного решения не существует,

в первом уравнении два отрицательных коэффициента при x4 и y3;

· взять любую свободную переменную с отрицательным коэффициентом и выделить столбец, содержащий взятую переменную,

возьмём переменную x4 и выделим столбец с x4;

- (     )
  - ( )
- (   )

· в выделенном столбце найти наименьшее отношение свободных членов к коэффициентам при свободных переменных, знаки которых совпадают со знаками свободных членов,

в столбце с x4 два коэффициента в первой и второй строках, знаки которых совпадают со знаками свободных членов, находим минимальное отношение:

· взять базисную переменную, которая находится в строке с минимальным отношением,

минимальное отношение находится в первой строке, поэтому берём базисную переменную x1:

- (     )
  - ( )
- (   )

(выделенные столбец и строка)

· обменять местами выбранные свободную и базисную переменные, для этого:

§ выразить в выбранной строке свободную переменную через все оставшиеся и подставить полученное выражение во все оставшиеся уравнения

в нашем случае меняем местами переменные x4 и x1:

в первой строке выражаем x4 через оставшиеся переменные:

подставляем выражение для x4 во второе и третье уравнения:

и получаем новый стандартный вид системы:

(5)

В этой системе все свободные члены не отрицательные, поэтому, приравнивая к нулю все свободные переменные, получим опорное решение:







Дата добавления: 2015-06-29; просмотров: 468. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Дизартрии у детей Выделение клинических форм дизартрии у детей является в большой степени условным, так как у них крайне редко бывают локальные поражения мозга, с которыми связаны четко определенные синдромы двигательных нарушений...

Педагогическая структура процесса социализации Характеризуя социализацию как педагогический процессе, следует рассмотреть ее основные компоненты: цель, содержание, средства, функции субъекта и объекта...

Типовые ситуационные задачи. Задача 1. Больной К., 38 лет, шахтер по профессии, во время планового медицинского осмотра предъявил жалобы на появление одышки при значительной физической   Задача 1. Больной К., 38 лет, шахтер по профессии, во время планового медицинского осмотра предъявил жалобы на появление одышки при значительной физической нагрузке. Из медицинской книжки установлено, что он страдает врожденным пороком сердца....

Различие эмпиризма и рационализма Родоначальником эмпиризма стал английский философ Ф. Бэкон. Основной тезис эмпиризма гласит: в разуме нет ничего такого...

Индекс гингивита (PMA) (Schour, Massler, 1948) Для оценки тяжести гингивита (а в последующем и ре­гистрации динамики процесса) используют папиллярно-маргинально-альвеолярный индекс (РМА)...

Методика исследования периферических лимфатических узлов. Исследование периферических лимфатических узлов производится с помощью осмотра и пальпации...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия