Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Коэффициенты корреляции рангов





Наряду с r и η для измерения тесноты зависимости между коррелируемыми показателями часто используются так называемые эмпирические показатели, которые называются коэффициентом корреляции рангов:

1. Коэффициент Спирмэна (p)

2. Коэффициент Кендэла (τ)

Оба эти показателя основаны на корреляции не самих значений (х и у), а их рангов.

Коэффициент корреляции рангов Спирмэна

Для расчета коэффициентов корреляции рангов Спирмэна значения случайных величин х и у нумеруются (каждое отдельно) в порядке возрастания (или убывания) от 1 до n, т.е. им присваивается определенный ранг (Nх и Nу) – порядковый номер в ряду. Если встречается несколько одинаковых значений х (или у), то каждому значению присваивается ранг, равный частному от деления суммы рангов, приходящихся на эти значения, на число этих равных значений.

Затем ранги отдельных значений факторного признака сопоставляются с рангами результативного признака.

Разность рангов (Nx-Ny) обозначают d. Степень тесноты связи между изучаемыми признаками в этом случае можно определить по формуле Спирмэна

где d – разность рангов х и у

n – число пар наблюдений.

Коэффициент корреляции рангов Спирмэна р находится в пределах от 0 до ±1. Когда ранги результативного признака полностью совпадают с рангами факторного признака, то каждое значение Nx=Ny и ∑d2=0, тогда р = 1, то можно говорить о почти полной прямой связи. Если ранги идут строго в противоположном направлении, т.е. первому рангу фактора х соответствует n-й ранг (последний) результативного признака у, второму рангу х соответствует n-1 ранг у и т.д., то в этом случае максимальная величина будет равна

может иметь максимальное значение 2.

И тогда по формуле Спирмэна р=-1, что свидетельствует почти о полной обратной связи между х и у.

Если же связь между изменениями х и у отсутствует (р=0), то очевидно, в этом случае должно наблюдаться равенство.

Этот показатель менее точен по сравнению с r и η. Расчет показателя прост, поэтому ему отдают предпочтение.

 

Пример.

производственные основные фонды, млн.р. х валовая продукция, млн.р у Nx Ny d=Nx-Ny d2
60,5 836,4   10,5 0,5 0,25
40,7 836,4   10,5 -0,5 0,25
33,8 303,0     -2  
22,1 134,9   1,5 2,5 6,25
33,8 139,3        
33,8 265,0        
20,9   1,5   -2,5 6,25
35,9 287,2        
21,6 189,9   5,5 -2,5 6,25
22,4 189,9   5,5 -0,5 0,25
20,9 134,9 1,5 1,5    
        40,5

Находим коэффициент Спирмэна

Зависимость между стоимостью основных фондов и выпускаемой продукции сильная.

Коэффициент Кендэла (τ)

Для расчета значения ранжируются. Затем определяют меру соотношения последовательности рангов у последовательности рангов х.

При этом для каждого ранга у определяют число следующих за ним значений рангов, превышающих его величину. Сумму чисел таких превышений обозначаем Р и будем считать со знаком (+). Аналогично для каждого ранга (у) определяют число следующих за ним рангов, имеющих значение меньше его величины. Сумма чисел таких случаев обозначаем через Q и будем считать со знаком (-).

Очевидно, что Р достигает максимума в том случае, если ранги у точно совпадают с рангами х. Если число пар рангов равно n, то максимальное значение слагаемого Р будет равно:

Рmax=(n-1)+(n-2)+…+3+2+1=n(n-1)/2

Соответственно слагаемое Qmax тоже имеет максимум абсолютного значения,

если последовательность вариантов у имеет обратную тенденцию по отношению к последовательности рангов вариантов х.

Коэффициент Кендэла (τ) предполагает измерение меры соот-ия последовательности рангов двух переменных путем сравнения общего итога ∑ положительных и отрицательных баллов (S=P+Q) с максимальным значением одного из слагаемых, т. е.

 

Пример:

Производ. фонды, млн.р. х валовая продукция, млн.р. у Nx Ny d=Nx-Ny d2
1,2 2,8        
1,6 4,0     -1  
2,5 3,8        
3,8 6,5        
4,3 8,0        
5,5 10,1     -1  
6,0 9,5        
8,0 12,5        
9,1 18,3        
10,0 24,5        
n=10          

 

Рассчитаем коэффициент Кендэла

у: Р= 9+7+7+6+5+3+3+2+1=43

х: Q=0+(-1)+0+0+0+(-1)+0+0+0=-2

S=43-2=41

Тогда

Получаемый коэффициент свидетельствует о значительной тесноте зависимости между изменениями значений х и у.

Данная формула применима для тех случаев, когда отдельные значения признака (х и у) не повторяются и следовательно, их ранги не объединены.

 







Дата добавления: 2015-08-12; просмотров: 409. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Способы тактических действий при проведении специальных операций Специальные операции проводятся с применением следующих основных тактических способов действий: охрана...

Искусство подбора персонала. Как оценить человека за час Искусство подбора персонала. Как оценить человека за час...

Этапы творческого процесса в изобразительной деятельности По мнению многих авторов, возникновение творческого начала в детской художественной практике носит такой же поэтапный характер, как и процесс творчества у мастеров искусства...

Характерные черты официально-делового стиля Наиболее характерными чертами официально-делового стиля являются: • лаконичность...

Этапы и алгоритм решения педагогической задачи Технология решения педагогической задачи, так же как и любая другая педагогическая технология должна соответствовать критериям концептуальности, системности, эффективности и воспроизводимости...

Понятие и структура педагогической техники Педагогическая техника представляет собой важнейший инструмент педагогической технологии, поскольку обеспечивает учителю и воспитателю возможность добиться гармонии между содержанием профессиональной деятельности и ее внешним проявлением...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия