Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Проверка гипотез о математическом ожидании нормальной генеральной совокупности.





На практике иногда оказывается, что средний результат одной серии наблюдений заметно отличается от среднего результата другой серии. Что это? Влияние ошибок наблюдения? Или, может быть, мы имеем дело с двумя разными генеральными совокупностями.

Итак, имеем две случайные величины Х и У. Обе подчиняются нормальному закону распределения. Допустим, что мы располагаем двумя независимыми выборками объёмами n1 и n2 соответственно. Нулевая гипотеза: М (Х)= М (У). За альтернативную гипотезу примем . Дисперсии этих двух выборок будем считать известными.

Если гипотеза Н 0 справедлива, то разность их арифметических средних распределена также по нормальному закону, а дисперсия этой разности (при условии, что Х и У – независимы!) равна сумме дисперсий этих случайных переменных:

.

Введём нормированную случайную величину , которая также распределенанормально и имеет дисперсию¸ равную единице, и математическое ожидание, равное нулю. С помощью таблицы, функции Лапласа, нетрудно установить

критическое значение для , которое наша разность не может превосходить с заданной вероятностью . Если гипотеза Н0 имеет место, то эта вероятность мало отличается от единицы. Чем меньше , тем меньше вероятность отклонить проверяемую гипотезу.

Приведём пример.

Допустим, что мы располагаем двумя сериями наблюдений с количеством n 1 =25 и n2 =50. При этом, получены средние значения . Установить с вероятностью 0,99, является ли это расхождение случайным. Пусть обе случайные величины имеют стандартное отклонение = 0, 30.

Вычислим нормированную разность

 

Из таблицы функции Лапласа следует, что c вероятностью (надёжностью) 0,99 наша нормированная случайная величина должна быть меньше 2,576. Область значений z>2,576 при нашей гипотезе достичь практически невозможно. Это означает, наблюдаемое расхождение нельзя считать случайным.

Следует отметить, что в случае z<2,576, ещё нельзя утверждать, что гипотеза подтвердилась. С помощью проверки гипотез можно лишь отвергнуть проверяемую гипотезу, но никогда нельзя доказать её справедливость.

 







Дата добавления: 2015-08-12; просмотров: 481. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Ваготомия. Дренирующие операции Ваготомия – денервация зон желудка, секретирующих соляную кислоту, путем пересечения блуждающих нервов или их ветвей...

Билиодигестивные анастомозы Показания для наложения билиодигестивных анастомозов: 1. нарушения проходимости терминального отдела холедоха при доброкачественной патологии (стенозы и стриктуры холедоха) 2. опухоли большого дуоденального сосочка...

Сосудистый шов (ручной Карреля, механический шов). Операции при ранениях крупных сосудов 1912 г., Каррель – впервые предложил методику сосудистого шва. Сосудистый шов применяется для восстановления магистрального кровотока при лечении...

Дренирование желчных протоков Показаниями к дренированию желчных протоков являются декомпрессия на фоне внутрипротоковой гипертензии, интраоперационная холангиография, контроль за динамикой восстановления пассажа желчи в 12-перстную кишку...

Деятельность сестер милосердия общин Красного Креста ярко проявилась в период Тритоны – интервалы, в которых содержится три тона. К тритонам относятся увеличенная кварта (ув.4) и уменьшенная квинта (ум.5). Их можно построить на ступенях натурального и гармонического мажора и минора.  ...

Понятие о синдроме нарушения бронхиальной проходимости и его клинические проявления Синдром нарушения бронхиальной проходимости (бронхообструктивный синдром) – это патологическое состояние...

Studopedia.info - Студопедия - 2014-2025 год . (0.007 сек.) русская версия | украинская версия