Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Проверка гипотезы о равенстве дисперсий двух нормальных генеральных совокупностей.





Рассмотрим две случайные величины Х и У, каждая из которых подчиняется нормальному закону с дисперсиями . Пусть из этих генеральных совокупностей извлечены две выборки объёмами п1 и п2. Проверим гипотезу Н0 о том, что относительно альтернативной гипотезы Н1, заключающейся в том, что

Однако, мы располагаем только выборочными дисперсиями = и = . Задача проверки гипотезы Н0 сводится к сравнению выборочных дисперсий.

Для построения критической области с выбранной надёжностью необходимо исследовать совместный закон распределения оценок и . Таким законом распределения является распределение Фишера – Снедекора (или F - распределение)

Рассмотрим случайную величину , распределённую нормально с математическим ожиданием Х и с дисперсией . Произведём две независимые выборки объёмами п1 и п2. Для оценки используют выборочные дисперсии. Случайную величину, определяемую отношением , называют величиной с распределением Фишера-Снедекора. Имеются таблицы для дифференциального закона распределения Фишера-Снедекора, которые зависят лишь от объёма выборки и уровня значимости

, где k1 = n1 -1, k2 = n2 -1.

 

Вернёмся снова к задаче проверки гипотезы о равенстве дисперсий. Сначала нужно вычислить выборочные дисперсии. Найдём отношение F= ,причём в числителе поставим большую из двух оценок дисперсии. Выберем уровень значимости и из таблиц находим число F которое сравнивается с вычисленным F. Если окажется, что , то проверяема гипотеза Н0 отвергается, в противном случае делается вывод о том, что наблюдения не противоречат проверяемой гипотезе.

 







Дата добавления: 2015-08-12; просмотров: 944. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Тема 5. Анализ количественного и качественного состава персонала Персонал является одним из важнейших факторов в организации. Его состояние и эффективное использование прямо влияет на конечные результаты хозяйственной деятельности организации.

Билет №7 (1 вопрос) Язык как средство общения и форма существования национальной культуры. Русский литературный язык как нормированная и обработанная форма общенародного языка Важнейшая функция языка - коммуникативная функция, т.е. функция общения Язык представлен в двух своих разновидностях...

Патристика и схоластика как этап в средневековой философии Основной задачей теологии является толкование Священного писания, доказательство существования Бога и формулировка догматов Церкви...

Принципы резекции желудка по типу Бильрот 1, Бильрот 2; операция Гофмейстера-Финстерера. Гастрэктомия Резекция желудка – удаление части желудка: а) дистальная – удаляют 2/3 желудка б) проксимальная – удаляют 95% желудка. Показания...

Ваготомия. Дренирующие операции Ваготомия – денервация зон желудка, секретирующих соляную кислоту, путем пересечения блуждающих нервов или их ветвей...

Билиодигестивные анастомозы Показания для наложения билиодигестивных анастомозов: 1. нарушения проходимости терминального отдела холедоха при доброкачественной патологии (стенозы и стриктуры холедоха) 2. опухоли большого дуоденального сосочка...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия