Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Геометрическая интерпретация производной.





 

Пусть на плоскости xOy задана кривая, описываемая уравнением . Проведём касательную к кривой в точке . Возьмём на кривой точку M1 и проведём секущую M0M1 (рис. 15.1). При изменении точки M1 положение секущей будет меняться.

Рис. 15.1.

 

Определение 15.2. Если при стремлении точки к фиксированной точке секущая не зависимо от способа стремления точки к точке стремится к одному и тому же предельному положению, то прямая, являющаяся этим предельным положением, называется касательной к кривой в точке .

 

Получим уравнение этой касательной. Обозначим координаты точки M1 через и пусть – угол наклона секущей к оси Ox. Тогда (см. рис. 15.1) угловой коэффициент секущей M0M1 равен

. (15.3)

Если же устремить точку M1 к точке M0, то есть устремить к нулю, то в случае существования производной угол будет стремиться к некоторому пределу , где . Следовательно, прямая, составляющая с положительным направлением оси Ox угол и проходящая через точку M0 и будет касательной. Её угловой коэффициент .

Запишем уравнение касательной к графику в точке :

. (15.4)

 

Определение 15.3. Прямая называется перпендикулярной к кривой в точке , если она перпендикулярна касательной к кривой в точке . Эта прямая называется также нормалью к этой кривой.

 

Угловой коэффициент нормали к кривой в точке M0 при , и уравнение нормали к графику функции, проходящему через точку запишется в следующем виде:

. (15.5)

Если , то уравнение нормали .

Замечание 15.1. Если в точке и , то касательная к кривой в точке существует, она вертикальна и её уравнение . Уравнение соответствующей нормали .☼

 







Дата добавления: 2015-08-12; просмотров: 959. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Эндоскопическая диагностика язвенной болезни желудка, гастрита, опухоли Хронический гастрит - понятие клинико-анатомическое, характеризующееся определенными патоморфологическими изменениями слизистой оболочки желудка - неспецифическим воспалительным процессом...

Признаки классификации безопасности Можно выделить следующие признаки классификации безопасности. 1. По признаку масштабности принято различать следующие относительно самостоятельные геополитические уровни и виды безопасности. 1.1. Международная безопасность (глобальная и...

Прием и регистрация больных Пути госпитализации больных в стационар могут быть различны. В цен­тральное приемное отделение больные могут быть доставлены: 1) машиной скорой медицинской помощи в случае возникновения остро­го или обострения хронического заболевания...

Внешняя политика России 1894- 1917 гг. Внешнюю политику Николая II и первый период его царствования определяли, по меньшей мере три важных фактора...

Оценка качества Анализ документации. Имеющийся рецепт, паспорт письменного контроля и номер лекарственной формы соответствуют друг другу. Ингредиенты совместимы, расчеты сделаны верно, паспорт письменного контроля выписан верно. Правильность упаковки и оформления....

БИОХИМИЯ ТКАНЕЙ ЗУБА В составе зуба выделяют минерализованные и неминерализованные ткани...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия