Студопедия — Основные положения упругого режима
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Основные положения упругого режима






Как показали теоретические исследования и эксперименты, а также многолетняя практика разработки нефтегазоводоносных пластов, упругие свойства жидкостей и породы оказывают существенное влияние на показатели разработки залежей. Эти свойства необходимо учитывать при подсчете запасов нефти и газа, при проектировании разработки месторождений, а также в процессе их эксплуатации.

Известно, что в пластовых условиях в жидкости (нефти) содержится газ как в свободном, так и в растворенном состоянии. Причем, если пластовое давление в процессе эксплуатации превышает давление насыщения жидкости газом, то весь пластовый газ находится в растворенном состоянии и к забоям скважин поступает однородная (однофазная) жидкость (нефть). В этом случае источником пластовой энергии является упругая деформация пласта и упругость насыщающей его жидкости, и режим пласта называется упругим. При этом в начальной стадии эксплуатации упругие свойства проявляются лишь в окрестности скважины и с течением времени происходит перераспределение давления вплоть до контура пласта.

Если пласт является закрытым (например, выклинивается или ограничен непроницаемыми сбросами), то он работает на истощение и режим пласта называется замкнуто-упругим.

В большинстве случаев источником энергии вытеснения нефти из пласта к забоям скважин является естественный или создаваемый напор контурными и подошвенными водами. В этом случае режим пласта характеризуется как упруго-водонапорный. Существует понятие и жесткого водонапорного режима, когда упругие силы проявляют себя весьма слабо.

Теория упругого режима была начата работами И. Н. Стрижова, М. Маскета, Р. Шилсюида и У. Херста. Однако наиболее строго основы теории упругого режима были разработаны в нашей стране В. Н. Щелкачевым. Им были впервые учтены влияние объемной упругости пористой среды и ряда важных факторов на фильтрацию жидкостей и впервые решены фундаментальные задачи теории упругого режима для практических целей разработки нефтяных месторождений. Затем последовал ряд работ как советских, так и зарубежных ученых.

Одними из важных параметров теории упругого режима являются коэффициенты объемной упругости жидкости (b ж)и пласта (b с). Количество жидкости, получаемое из пласта за счет упругих свойств (расширение жидкости и уменьшение порового пространства) при снижении пластового давления, принято называть упругим запасом пласта (D V), который, согласно В. Н. Щелкачеву, определяется формулами:

;

где

b – коэффициент упругоемкости пласта, 1/МПа, показывающий, на какую часть первоначального объема изменяется объем жидкости в элементе при уменьшении давления на единицу;

D P – изменение пластового давления, МПа.

Коэффициенты объемной упругости имеют следующий порядок величин: для нефти bн =(7¸30)´10-4 1/МПа; для воды bв =(2,7¸5)´10-4 1/МПа; для сцементированных горных пород bс =(0,3¸2) ´10-4Мпа.

Величина, обратная коэффициенту объемной упругости К=β;-1, называется модулем объемной упругости или модулем объемного сжатия.

При пуске «возмущаюей скважины» возмущение передается по всей области пласта. Скорость перераспределения давления в пласте характеризуется величиной æ, называемой коэффициентом пьезопроводности, который выражается формулой

,

где

m – коэффициент абсолютной вязкости,

K – коэффициент проницаемости вдоль напластования.

Размерность коэффициента пьезопроводности [ æ;]= L 2 T -1. Величины его заключены в интервале 0,1≤ ≤5, где [ æ;]=м2/с.

При изучении неустановившихся процессов перераспределения давления в пласте удобно пользоваться безразмерными параметрами Фурье, введенными В.Н. Щелкачевым.

Как видим, параметры Фурье представляют собой «безразмерное время».

 

7.2 Решение одномерных задач методом последовательной смены стационарных состояний

7.2.1. Расчет притока к прямолинейной галерее. Рассмотрим полубесконечный пласт (рис. 7.1), где имеет место приток упругой жидкости к галерее. Пусть в сечении х =0 давление в пласте упало от начального давления P к до величины давления на галерее p с. Тогда точное решение задачи выражается интегралом вероятности [5].

Можно предложить наиболее простое, приближенное решение этой задачи. Пусть за время t зона пониженного давления распространилась на l (t) (см. pиc.7.1а).Будем считать, что в этой зоне распределение давления является стационарным [5]. На самом деле зона пониженного давления охватывает весь пласт и распределение давления не происходит по закону прямой линии, как для прямолинейного движения несжимаемой жидкости, т. е.

(7.1)

Таким образом, эпюра давления представляет собой прямую линию, перемещающуюся вдоль пласта с угловой точкой х=l (t), рис. 7.1б.Для точного решения эпюра давления угловой точки не имеет. В этом и состоит суть метода последовательной смены стационарных состояний.

Выделим элемент пласта длиной dx и площадью поперечного сечения f= 1. Очевидно, элементарный вес в данном объеме составит mgdx×;1= тgdx, авес жидкости по длине l = l (t) на единицу площади выразится интегралом

Отобранное количество жидкости G из пласта за время t равно разности первоначального количества жидкости и остатка в пласте, т. е.

(7.2)

 

 

Рис.7.1.Схема к расчету неустановившегося притока сжимаемой







Дата добавления: 2015-08-12; просмотров: 1173. Нарушение авторских прав; Мы поможем в написании вашей работы!



Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Тема 2: Анатомо-топографическое строение полостей зубов верхней и нижней челюстей. Полость зуба — это сложная система разветвлений, имеющая разнообразную конфигурацию...

Виды и жанры театрализованных представлений   Проживание бронируется и оплачивается слушателями самостоятельно...

Что происходит при встрече с близнецовым пламенем   Если встреча с родственной душой может произойти достаточно спокойно – то встреча с близнецовым пламенем всегда подобна вспышке...

Тактические действия нарядов полиции по предупреждению и пресечению групповых нарушений общественного порядка и массовых беспорядков В целях предупреждения разрастания групповых нарушений общественного порядка (далееГНОП) в массовые беспорядки подразделения (наряды) полиции осуществляют следующие мероприятия...

Механизм действия гормонов а) Цитозольный механизм действия гормонов. По цитозольному механизму действуют гормоны 1 группы...

Алгоритм выполнения манипуляции Приемы наружного акушерского исследования. Приемы Леопольда – Левицкого. Цель...

Studopedia.info - Студопедия - 2014-2024 год . (0.008 сек.) русская версия | украинская версия