Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Расчет предельных безводных дебитов несовершенных сважин и депрессий в газовых залежах с подошвенной водой при линейном законе фильтрации





Движение газа предполагается установившимся, изотермическим и следующим закону Дарси. При эксплуатации залежи, вследствие неравномерного распределения давления на поверхности раздела газ-вода, образуются конуса подошвенной воды ниже забоя скважин (см. рис. 11.2). Возникает интересная для газопромысловой практики задача определения предельных безводных дебитов газа и предельных депрессий, при превышении которых в скважины прорывается подошвенная вода. Такая же необходимость в определении предельных безводных дебитов газа возникает и при эксплуатации подземных хранилищ газа в водоносных пластах при наличии подошвенной воды.

Если принять основное допущение приближенной теории устойчивых конусов [2], то расчет верхнего значения предельного безводного дебита можно выполнить, используя решение задачи о напорном притоке газа к несовершенной скважине. В такой постановке исследование этой задачи было выполнено Б.Б. Лапуком и С.Н. Кружковым [29] на основе приближенного решения Маскета [1] для притока жидкости к несовершенной скважине. При этом показано, что предельный безводный дебит газа, в отличие от предельного безводного дебита нефти, является функцией трех параметров r, и и решение дается графическое в виде семейства кривых для фиксированных значений параметра ρ;0>1 Расчеты могут быть произведены по формулам и графикам для несжимаемой жидкости с погрешностью не более 10% [29].

Здесь рассматривается, та же задача, основанная на более эффективном решении 1.3 (17) [9] о напорном притоке к несовершенной скважине по линейному закону в широком диапазоне параметра r и не требующая дополнительного графического построения в отличие от [29]. Задача сводится к решению для притока несжимаемой жидкости с некоторым поправочным коэффициентом δ;, что позволяет использовать уже имеющиеся графики для расчета предельных безводных дебитов. Дается также и оценка коэффициента δ;.

Используем решение 1.3 (17) [9], которое для притока газа принимает вид

, (11.38)

где

Р 0 – средневзвешенное начальное давление.

Условие установившегося безводного притока газа, когда водяной конус неподвижен, определяется из закона Паскаля

. (11.39)

Пусть предельная высота конуса воды определяется ординатой x=x 0. Тогда, решая совместно (11.38) и (11.39), после некоторых преобразований получаем безразмерный предельный дебит для газовой скважины

; (11.40)

(11.41)

Сравнивая формулы (11.40) и (11.1), находим:

; (11.42)

. (11.43)

Формула (11.43) представляет безразмерный предельный безводный дебит по нефти.

Таким образом отпадает необходимость находить x 0 и соответствующую ей функцию в формуле (11.40), связанную с распределением потенциала в пласте, т. к. они уже рассчитаны для притока несжимаемой жидкости (см табл. 11.1, рис. 11.3). А потому определение безводных дебитов в газовых залежах не представляет принципиальных трудностей. Формулу (11.42) можно записать в виде

. (11.44)

При достаточно большом значении , формула (11.44) упрощается

(11.45)

Выражение для размерного дебита с учетом (11.41) и (11.44) запишется формулой

, (11.46)

где

(11.47)

При достаточно большом значении формула (11.46) упрощается

. (11.48)

Итак, рассчитать предельный безводный дебит газа для газовой залежи можно по безразмерным графикам для предельного дебита нефти (см. табл. 11.1 и рис. 11.3). Из этой же таблицы определяются x 0 и .

Представляется интересным оценить погрешность формулы (11.45) или (11.48). Нетрудно видеть, что их погрешность оценивается соотношением

(11.49)

Покажем минимальную и максимальную погрешность этих формул. За минимальную погрешность примем d % при r 0=0,05 и =0,8, а за максимальную погрешность примем d % при r ³100 и =0,1. Для заданных и промежуточных параметров r0 и значения предельной ординаты вершины конуса определялись из табл. 11.1. Результаты расчетов погрешности d % приведены в табл. 11.4.

 

Таблица 11.4

 

Результаты расчетов погрешности d 0 по формуле (11.49)

Параметры
         
r 0=0,05; =0,8; x 0=0,97 r 0=1; =0,1; x 0=0,60 r 0=4; =0,1; x 0=0,43 r 0=10; =0,1; x 0=0,32 r 0=100; =0,1; x 0=0,26   1,5 20,0 214.5 34,0 37.0 0,75 10,0 14.3 17,0 18,5 0,38 5,0 7,1 8,5 9.3
           

 

Как видно из таблицы для малых значений r 0 и больших значений вскрытия h погрешность формул (11.45) и (11.48) незначительна (первая строка), тогда как с уменьшением вскрытия и увеличением r 0 погрешность растет. Однако при ³8 погрешность формул (11.45) и (11.48), даже для больших значений r 0, не превосходит 10%. Заметим, что в работе [29] оценивается погрешность d <10% при >10.

В работе [29] при определении депрессии исходим из двучленной формулы притока

, (11.50)

где

Q=Q пр – предельный безводный дебит газовой скважины, который авторами [29] определялся при линейном законе фильтрации.

Здесь мы покажем способ определения ΔР пр при линейном законе фильтрации (В =0), который не требует определения предельного расхода Q пр.

Из уравнения (11.50) при В =0 следует

, (11.51)

где

А – коэффициент фильтрационного сопротивления, определяемый как по результатм исследования скважин, так и аналитически (см. §9.2.3)

(11.52)

S = С 1+ С 0+ С ск – суммарные добавочные фильтрационные сопротивления, обусловленные соответственно относительным вскрытием пласта, перфорацией колонны и скин-эффектом.

Внося выражение (11.46) в (11.51), получаем

(11.53)

Произведение параметров АQ 0 в соответствии с формулами (11.52) и (11.41) составит:

. (11.54)

Вводя безразмерные параметры

(11.55)

и внося (11.54) в (11.53), после ряда преобразований находим выражение для безразмерной депрессии

(11.56)

где

(11.57)

Размерная депрессия определится из соотношения (11.55): .

Таким образом, для определения ΔР пр необходимо знать средневзвешенное пластовое давление Р 0, плотности ρ;в и ρ;г, геометрию пласта, безразмерный предельный дебит по жидкости q ж, а также безразмерную ординату вершины конуса, метод определения которых изложен в § 11.2.2.







Дата добавления: 2015-08-12; просмотров: 1423. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Закон Гука при растяжении и сжатии   Напряжения и деформации при растяжении и сжатии связаны между собой зависимостью, которая называется законом Гука, по имени установившего этот закон английского физика Роберта Гука в 1678 году...

Характерные черты официально-делового стиля Наиболее характерными чертами официально-делового стиля являются: • лаконичность...

Этапы и алгоритм решения педагогической задачи Технология решения педагогической задачи, так же как и любая другая педагогическая технология должна соответствовать критериям концептуальности, системности, эффективности и воспроизводимости...

Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...

Краткая психологическая характеристика возрастных периодов.Первый критический период развития ребенка — период новорожденности Психоаналитики говорят, что это первая травма, которую переживает ребенок, и она настолько сильна, что вся последую­щая жизнь проходит под знаком этой травмы...

РЕВМАТИЧЕСКИЕ БОЛЕЗНИ Ревматические болезни(или диффузные болезни соединительно ткани(ДБСТ))— это группа заболеваний, характеризующихся первичным системным поражением соединительной ткани в связи с нарушением иммунного гомеостаза...

Studopedia.info - Студопедия - 2014-2024 год . (0.011 сек.) русская версия | украинская версия