Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Краткий обзор теоретических работ по конусообразованию





Задачам пространственного движения посвящен ряд работ академика П.Я. Полубариновой-Кочиной [1-3], под руководством которой в институте механики АН СССР проведена серия экспериментальных работ на щелевых моделях по изучению плоского движения в пористых средах, в том числе проводились опыты по обводнению нефтяных скважин. В частности, была решена задача о поднятии подошвенной воды в однородном пласте. Для двухслойного пласта плоская задача решена В.А. Карпычевым [4]. Ряд задач о притоке к несовершенной скважине рассмотрен И.А. Чарным [5-10].

Плоская задача о поднятии подошвенной воды рассматривалась также Д.А. Эфросом и И.Ф. Курановым [11]. Ряд задач в различной постановке рассмотрен и для радиального пласта [12]. На параболической щелевой модели Д.А. Эфросом и Р.А. Аллахвердиевой, посредством применения метода смены стационарных состояний, решена задача о времени истощения нефтяной залежи. Для схемы осесимметричного движения в однородно-анизотропном пласте известны приближенные решения В.А. Карпычева [4, 13, 14], где вязкости нефти и воды принимались одинаковыми, силы тяжести не учитывались. Полученные решения оказались довольно сложными для вычислений. В работе М.И. Швидлера, Г.В. Гомоновой [15] рассмотрена задача подъема водяного конуса от его стабильного положения до забоя несовершенной скважины в однородном осесимметричном пласте при дебитах, соизмеримых с предельными. В работе М.Л. Сургучева [16] изучен характер продвижения водонефтяного контакта к галерее, несовершенной по степени вскрытия неоднородного пласта. В работах А.П. Телкова [17-22 и др.] рассмотрены задачи о безводном периоде несовершенных скважин.

Сложным задачам перемещения ВНК и времени обводнения скважин посвящены работы Г.С. Салехова, В.Л. Данилова [23, 24] и В.В. Скворцова [25]. Идеи В.Л. Данилова затем были развиты в диссертации Ю.С. Абрамова, в которой изложены приемы использования интегро-дифференциальных уравнений пространственного движения границы раздела двух жидкостей для решения статических и динамических задач теории конусообразования. Влияние характера вскрытия пласта на величину безводного периода и форму поверхности раздела изучалась Н.С. Пискуновым [26]. Для случая нефтегазовой залежи с подошвенной водой получена приближенная формула для безводного периода эксплуатации П.Б. Садчиковым [27], более точные решения, учитывающие фазовые проницаемости и анизотропию пласта, приведены в работах А.П. Телкова [18-21, 28-31]. Нестационарное конусообразование рассмотрено также в работах У.П. Куванышева [32, 33], М.М. Мусина [34], И.В. Кудрина [35], С.Н. Закирова [36] и др.

Строгое решение задачи о динамике конуса требует знания истинного распределения потенциала в нефтенасыщенной части пласта и уравнения поверхности двух фаз, которые, вообще говоря, нам неизвестны. Оба эти фактора взаимосвязаны, в чем и заключается трудность проблемы. Однако, возможен приближенный, но строгий подход к решению этой задачи, одним из которых является метод конечных разностей. Так, например, Д. Собосинский и А. Корнелиус используют для решения данной задачи так называемый двумерный конечноразностный метод, который позволяет учесть произвольные изменения дебитов, анизотропию, двухфазность потока, геометрию пласта, различные граничные условия и другие необходимые факторы, чтобы приблизить условия решения к реальным. Но, поскольку, все эти факторы многообразны, то универсального решения, очевидно, получить невозможно. Приходится решать задачу для каждой конкретной ситуации, что приводит к большим материальным затратам. Тем не менее, использование таких решений для оценки закономерности динамики конусов в других условиях окажется полезным.

 







Дата добавления: 2015-08-12; просмотров: 692. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Деятельность сестер милосердия общин Красного Креста ярко проявилась в период Тритоны – интервалы, в которых содержится три тона. К тритонам относятся увеличенная кварта (ув.4) и уменьшенная квинта (ум.5). Их можно построить на ступенях натурального и гармонического мажора и минора.  ...

Понятие о синдроме нарушения бронхиальной проходимости и его клинические проявления Синдром нарушения бронхиальной проходимости (бронхообструктивный синдром) – это патологическое состояние...

Опухоли яичников в детском и подростковом возрасте Опухоли яичников занимают первое место в структуре опухолей половой системы у девочек и встречаются в возрасте 10 – 16 лет и в период полового созревания...

Почему важны муниципальные выборы? Туристическая фирма оставляет за собой право, в случае причин непреодолимого характера, вносить некоторые изменения в программу тура без уменьшения общего объема и качества услуг, в том числе предоставлять замену отеля на равнозначный...

Тема 2: Анатомо-топографическое строение полостей зубов верхней и нижней челюстей. Полость зуба — это сложная система разветвлений, имеющая разнообразную конфигурацию...

Виды и жанры театрализованных представлений   Проживание бронируется и оплачивается слушателями самостоятельно...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия