Тема 8. Анализ полученных данных.
4. Количественный анализ. Виды статистического анализа. 5. Качественный анализ данных
Полученную в ходе сбора маркетинговую информацию следует упорядочить и формализовать. Для обработки небольших массивов информации (от нескольких десятков до ста анкет) можно использовать ручной метод. При больших объемах выборки и использовании специальных математических методов анализа используется компьютерная обработка информации. Для обработки результатов опросов и статистического анализа используется специализированное программное обеспечение для научных и маркетинговых исследований, анализа информации и обработки данных. Это пакеты статистических программ – сложные программные продукты, которые широко применяются в практической и исследовательской работе в разных областях. Наиболее известными и широко используемыми являются программные продукты SPSS (Statistical package for social science) компании SPSS и Statistica компании Statsoft. Первым шагом количественной обработки информации является подсчет частот появления каждого варианта признака (линейного распределения ответов на вопросы анкеты) и упорядочение полученных данных в таблице одномерного распределения. Подсчитанные частоты переводятся в процентные отношения, что позволяет оценить меру оценки или отношения респондентов к тому или иному признаку, а также сравнивать вариационные ряды с различным числом наблюдений. Для более наглядного распределения значений признаков прибегают к графическому представлению маркетинговой информации. Наиболее распространенными видами графического изображения являются графики, диаграммы, гистограммы. Для целей математического анализа и сравнительной характеристики различных распределений применяются обобщающие статистические показатели – среднеарифметическое, мода, медиана. Дополнительным способом анализа данных является составление параллельных рядов. Чаще всего данные представляются в виде двумерных таблиц сопряженности. В строках указываются наблюдаемые значения первого признака, в столбцах – наблюдаемые значения второго признака. На пересечении строк и столбцов находятся частоты наблюдаемых пар значений.
Наиболее часто используются следующие процедуры количественного анализа данных: одномерные частотные распределения; таблицы сопряженности; сравнение средних; факторный анализ; кластерный анализ; регрессионный анализ; дисперсионный анализ; корреляционный анализ; многомерное шкалирование. Выбор того или иного метода анализа зависит в первую очередь от поставленных гипотез, то есть вопросов, на которые мы хотим получить ответ. Исследование может носить описательный либо объяснительный характер. В первом случае достаточно сделать одномерный анализ – описать одну характеристику выборки в определенный момент времени. Во втором случае требуется многомерный анализ – установление взаимосвязей между двумя и более переменными с целью проверки причинных связей. Выбор метода анализа зависит также от уровня измерения (шкалы) переменных: номинальный, ранговый, интервальный и метрический. Чем выше уровень шкалы, тем более сложные методы анализа данных можно применить. Так, для интервальных шкал применяется, например, регрессионный, факторный и кластерный анализ, а для номинальных шкал – одномерные частотные распределения, таблицы сопряженности.
Качественный анализ данных представляет процедуру проверки исходных гипотез, интерпретации и объяснения исходных данных. Существует множество методов анализа данных, применяемых маркетологами. Качественный анализ осуществляется после количественной обработки данных и получения линейного распределения по всем переменным (признакам). В зависимости от целей исследования анализ данных может включать: · типологизацию данных: упорядочение исходных эмпирических данных по отдельным признакам, что позволяет дать общую оценку выборочной совокупности и частных подвыборок (половозрастных, территориальных, этнических, профессиональных и т. д.); · группировку данных: «сжатие» эмпирической информации – укрупнение исходных шкал, выявление типических групп, подлежащих дальнейшему анализу. Это позволяет сократить число переменных, обобщить материал (например, разделение на приверженцев и противников марки); · объяснение полученных данных: установление закономерных связей между изучаемым процессом и другими процессами или его прошлым состоянием; · прогнозирование развития изучаемого явления или процесса.
|