Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

ПРИЛОЖЕНИЕ Б. Частица в прямоугольной потенциальной яме





Для простоты будем рассматривать прямоугольную потенциальную яму бесконечно большой глубины и конечной ширины a (рис. Б). Потенциальная энергия частицы (с массой μ;) при x < 0 и x > a должна быть бесконечно велика, поэтому ее волновая функция за пределами ямы обращается в нуль. Внутри ямы, где U (x) = 0, уравнение Шредингера

.

Введем следующее обозначение:

.

Тогда уравнение Шредингера будет выглядеть как

.

Его решением является функция

.

Это решение должно обращаться в нуль на границах потенциальной ямы. В результате В = 0 и

.

Отсюда получим , т.е.

где n = 1, 2, 3 и т.д. Решение n = 0 следует отбросить как лишенное физического смысла. В этом случае волновая функция равна нулю тождественно, т.е. при всех значениях x. Но поскольку квадрат модуля волновой функции – это плотность вероятности обнаружить частицу в точке x, вероятность найти частицу где-либо в пространстве при n = 0 равна нулю (такой частицы просто нет).

Число n называется квантовым числом и равно целому числу длин полуволн де Бройля частицы

со средеквадратичным значением импульса на отрезке длиной a (рис. Б). Энергия, соответствующая волновой функции с квантовым числом n, равна

.

Остановимся подробнее на свойствах ψ; -функций. Четность состояний, определяемая в данном случае как свойство ψ; -функции менять или сохранять знак при замене координаты x на ax, чередуется: функция ψ;1 нижнего по энергии (основного) состояния является четной, функция ψ;2 следующего (первого возбужденного) состояния – нечетной, и т.д. Волновые функции частицы четны или нечетны лишь в одномерной потенциальной яме, симметричной относительно середины. Функция ψ;1 не имеет узлов (т.е. не обращается в нуль) на всем интервале 0 < x < a. Функция ψ;2 имеет один узел, ψ;3 – два узла, и.т.д.

Число связанных состояний в потенциальной яме конечной глубины определяется ее глубиной (для бесконечной ямы оно бесконечно). В области, где En < U (x), волновые функции, хотя и быстро стремятся к нулю, но не обращаются в нуль тождественно (см. ПРИЛОЖЕНИЕ В): это происходит только при U → +∞.

Все это – общие, не зависящие от конкретного вида потенциала, свойства одномерного финитного движения – движения, совершающегося (по классическим представлениям) в ограниченной области пространства.

 

 







Дата добавления: 2015-08-12; просмотров: 508. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Репродуктивное здоровье, как составляющая часть здоровья человека и общества   Репродуктивное здоровье – это состояние полного физического, умственного и социального благополучия при отсутствии заболеваний репродуктивной системы на всех этапах жизни человека...

Случайной величины Плотностью распределения вероятностей непрерывной случайной величины Х называют функцию f(x) – первую производную от функции распределения F(x): Понятие плотность распределения вероятностей случайной величины Х для дискретной величины неприменима...

Схема рефлекторной дуги условного слюноотделительного рефлекса При неоднократном сочетании действия предупреждающего сигнала и безусловного пищевого раздражителя формируются...

Эндоскопическая диагностика язвенной болезни желудка, гастрита, опухоли Хронический гастрит - понятие клинико-анатомическое, характеризующееся определенными патоморфологическими изменениями слизистой оболочки желудка - неспецифическим воспалительным процессом...

Признаки классификации безопасности Можно выделить следующие признаки классификации безопасности. 1. По признаку масштабности принято различать следующие относительно самостоятельные геополитические уровни и виды безопасности. 1.1. Международная безопасность (глобальная и...

Прием и регистрация больных Пути госпитализации больных в стационар могут быть различны. В цен­тральное приемное отделение больные могут быть доставлены: 1) машиной скорой медицинской помощи в случае возникновения остро­го или обострения хронического заболевания...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия