Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

ПРИЛОЖЕНИЕ А. Формула Резерфорда





Когда α-частица пролетает вблизи ядра, на нее действует кулоновская сила отталкивания

.

В этом случае траектория частицы представляет собой гиперболу. Обозначим буквой θ; угол между асимптотами гиперболы (рис. А), характеризующий отклонение частицы от первоначального направления (угол рассеяния). Расстояние b от ядра до первоначального направления полета α-частицы называется прицельным параметром. Чем ближе пролетает частица от ядра (чем меньше b), тем сильнее она рассеивается (тем больше θ;).

Если считать рассеивающее атомное ядро бесконечно тяжелым, то из закона сохранения энергии следует, что вдали от ядра импульс рассеянной α-частицы р по модулю будет таким же, как и импульс до рассеяния р 0. Следовательно, модуль приращения импульса α-частицы, возникающего в результате рассеяния

, (А.1)

где v – начальная скорость частицы, mα – ее масса. Согласно 2-му закону Ньютона,

.

Спроектировав фигурирующие в этом равенстве векторы на направление Δ; p, получим:

. (А.2)

Из рис. A видно, что проекция силы F на направление вектора Δ; p равна F cos ψ;. Угол ψ; можно выразить через полярный угол φ; и угол рассеяния θ;:

.

Следовательно

.

Подставим это выражение в (А.2), выразив dt как ;/ (здесь точка означает дифференцирование по времени):

. (А.3)

Произведение равно M / mα, где M – момент импульса α-частицы, взятый относительно рассеивающего ядра. Кулоновская сила, действующая на α-частицу, является центральной. Поэтому момент импульса остается все время постоянным и равным своему первоначальному значению mαvb. Тогда после замены на vb интеграл (А.3) легко вычисляется:

. (А.4)

Сопоставляя (А.1) и (А.4), найдем, что

. (А.5)

Рассмотрим слой рассеивающего вещества настолько тонкий, чтобы каждая α-частица при прохождении через него пролетала вблизи только одного ядра, т.е. претерпевала лишь однократное рассеяние. Чтобы рассеяться на угол, лежащий в пределах от θ; до θ;+ ;, частица должна пролететь вблизи одного из ядер по траектории, прицельный параметр которой заключен в пределах от b до b + db, причем ; и db, как это следует из (А.5), связаны соотношением

. (А.6)

Знак «минус» в (А.6) обусловлен тем, что с увеличением b угол рассеяния убывает. Но так как далее нас будет интересовать лишь абсолютное значение db в функции от θ; и ;, знак минус учитывать не будем.

Обозначим площадь поперечного сечения пучка α-частиц буквой S. Тогда количество атомов рассеивающей фольги на пути пучка равно nSa, где n – число атомов в единице объема, a – толщина фольги. Если считать, что α-частицы распределены равномерно по сечению пучка и число их велико, то количество частиц dN, пролетающих вблизи одного из ядер по траектории с прицельным параметром от b до b+db, будет равно

, (А.7)

где N – общее количество частиц в пучке.

Выразив в (А.7) b и db через θ; и ; в соответствии с (А.5) и (А.6), получим

.

Далее преобразуем множитель, содержащий угол θ;; тогда

.

Выражение 2πsin θdθ; есть телесный угол d Ω, в пределах которого заключены направления, соответствующие углам рассеяния от θ; до θ;+ ;. Учитывая, что кинетическая энергия α-частицы Tα = mαv 2/2, окончательно получаем

. (1.2)

 

 







Дата добавления: 2015-08-12; просмотров: 483. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Объект, субъект, предмет, цели и задачи управления персоналом Социальная система организации делится на две основные подсистемы: управляющую и управляемую...

Законы Генри, Дальтона, Сеченова. Применение этих законов при лечении кессонной болезни, лечении в барокамере и исследовании электролитного состава крови Закон Генри: Количество газа, растворенного при данной температуре в определенном объеме жидкости, при равновесии прямо пропорциональны давлению газа...

Ганглиоблокаторы. Классификация. Механизм действия. Фармакодинамика. Применение.Побочные эфффекты Никотинчувствительные холинорецепторы (н-холинорецепторы) в основном локализованы на постсинаптических мембранах в синапсах скелетной мускулатуры...

Гальванического элемента При контакте двух любых фаз на границе их раздела возникает двойной электрический слой (ДЭС), состоящий из равных по величине, но противоположных по знаку электрических зарядов...

Сущность, виды и функции маркетинга персонала Перснал-маркетинг является новым понятием. В мировой практике маркетинга и управления персоналом он выделился в отдельное направление лишь в начале 90-х гг.XX века...

Разработка товарной и ценовой стратегии фирмы на российском рынке хлебопродуктов В начале 1994 г. английская фирма МОНО совместно с бельгийской ПЮРАТОС приняла решение о начале совместного проекта на российском рынке. Эти фирмы ведут деятельность в сопредельных сферах производства хлебопродуктов. МОНО – крупнейший в Великобритании...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия